e librerie Qt consistono in una serie completa

di strumenti software per lo sviluppo di
applicazioni multipiattaforma in C++ e sono
state sviluppate inizialmente dalla Trolltech,
una software house finlandese acquisita
successivamente dalla Nokia ed ora nota come
Qt-Company. Dopo varie vicissitudini sulle
quali sorvoliamo, le librerie sono ora disponibili
all'utente con due tipi di licenza: GPL per
software open source, gratuita, ed a pagamento
per sviluppo di applicazioni closed source.
Grazie alle Qt sono state sviluppate innumerevoli
applicazioni open source tra cui, per esempio, il
desktop KDE peri vari sistemi operativi Linux;
questo ha portato alla disponibilita di un’enorme
quantita di codice di ottima qualita.
Proprio perché il codice disponibile basato
sulle Qt e a dir poco infinito, in questo corso ci

Code less.
(reate more.
Deploy everywhere.

Realizziamo un’applicaziob
eseguibile sia su PC che su un
terminale Android, in grado di

controllare tramite WiFi moduli a
LED multicolore
connessi a una scheda Fishino.

Lo faremo utilizzando le Qt,

che da questa prima puntata vi

K faremo conoscere.

di MASSIMO DEL FEDELE

limiteremo alla loro installazione e ad un esempio
pratico di utilizzo per sviluppare un’applicazione,
eseguibile sia su PC desktop che su un terminale
Andproid, in grado di controllare tramite WiFi uno
o pit LED multicolore (RGBW, ossia rosso, verde,
blu e bianco) connessi alle schede Fishino che vi
abbiamo presentato nei precedenti fascicoli di
Elettronica In.

Come accennato sopra, per lo sviluppo di

codice open source e/o ad uso personale le Qt
sono scaricabili gratuitamente ed utilizzabili
senza alcun limite; purtroppo va detto che i

costi delle licenze per lo sviluppo di software
proprietario non sono proprio abbordabili per uno
sviluppatore singolo...

Le Qt sono composte da una completa serie di
librerie software, un sistema di sviluppo (IDE),

chiamato Qt-Creator, contenente al suo interny

- ELETTRONICA IN ~ Ottobre 2016 117

SDK Tools Only

151659917

ommended)

uno strumento per la gestione dei progetti (un
po’come I'IDE di Arduino), un editor grafico
per le schermate delle applicazioni, un selettore
per passare da una piattaforma all’altra (per
esempio, da desktop ad Android) e molto altro.
Le librerie disponibili coprono praticamente
qualsiasi settore dell'informatica, ed in rete

si trovano componenti aggiuntivi installabili
nell’IDE nel caso se ne presenti la necessita.

E anche possibile estendere il numero di
widget (controlli) disponibili tramite plugin
(estensioni), cosa che tratteremo in un futuro
articolo, essendo l'installazione dei medesimi
non proprio semplicissima.

Fishino & Colibri

Controllo di LED RGBW tramite dispositivi mobili
Con questo progetto mostriamo 1'utilizzo

di vari tool di sviluppo applicati alla nostra
scheda Fishino la quale, abbinata ad uno o

pitt moduli Colibri (si tratta di driver per LED
RGBW che abbiamo descritto nel fascicolo

n° 202) consente il controllo di luci o qualsiasi
altro apparecchio tramite un cellulare Android
oppure un’applicazione su Personal Computer
connesso in rete.

Cogliamo 1’occasione per sfruttare il protocollo
di comunicazione UDP, recentemente
introdotto nel firmware e nelle librerie di

Fig. 1 — Ricerca dell’'SDK per QT.

Fishino, che presenta notevoli vantaggi rispetto
al protocollo TCP utilizzato abitualmente, in
particolar modo se si opera in una rete locale.
L’applicazione consiste in 2 moduli, uno che
gira su Desktop/Android, sviluppato tramite
le ottime librerie Qt, che andremo a descrivere
abbastanza in dettaglio, e 1’altro consistente

in un semplicissimo sketch che gira sul

nostro Fishino. L’App ¢ in grado di rilevare
autonomamente tutti i Fishini connessi in rete
ed elencarne sul cellulare le luci connesse,
permettendo la selezione del dispositivo su cui

Welcome to the Android SDK Tools
Setup Wizard

ard will guide you through the instalation of Android

puter,

Mext to continue.

Fig. 2 — Avvio dell’installazione dell’SDK.

118 Ottobre 2016 ~ ELETTRONICA IN .

operare e, relativamente a questo, il cambio di
luminosita dei 4 canali tramite 4 sliders.
L’installazione del sistema di sviluppo Qt +
Android risulta abbastanza laboriosa ma, se ci
seguirete fino in fondo, vi accorgerete che una
volta superato lo scoglio iniziale lo strumento &
efficacissimo per creare applicazioni facilmente
trasportabili tra i vari dispositivi al prezzo di
un semplice clic.

Potrete quindi sviluppare la vostra App sul
desktop, collaudarla, eseguirne il debug e una
volta pronta, caricarla sul cellulare e/o un
emulatore senza dover cambiare una sola riga
di programma.

Installazione del sistema di sviluppo per Android
Le Qt si appoggiano, per quanto riguarda

lo sviluppo Android, sull’ SDK di Google,
reperibile sul web all’indirizzo https://
developer.android.com/sdk/index.html#Other.
Poiche utilizzeremo le Qt per sviluppare

le nostre applicazioni, non ci interessa il
pacchetto Android Studio ma soltanto 1" SDK;
selezioneremo quindi la voce SDK Tools
Only e, di questa, la versione raccomandata
(recommended) che dipende dal sistema
operativo in uso (Fig. 1).

Selezioniamo quindi la prima voce, quella con
la scritta (Recommended). Apparira I'usuale
schermata con le condizioni del servizio, da
accettare, e quindi un pulsante di download
che avviera lo scaricamento dell’installatore.
Salviamo anche qui l'installer sul desktop ed
eseguiamolo (Fig. 2).

) Android SDK Tools Setup

Java SE Development Kit

Detect whether Java SE Development K

Location: C:\ProgramD

Fig. 3 — Verifica della versione di Java presente nel computer.

L’installer rilevera la versione attuale di

Java installata nel computer e, se precedente
a quella richiesta, fornira ’avviso visibile
nella finestra di dialogo in Fig. 3. Vi verra
ora chiesta la tipologia di installazione:

per evitare di dover eseguire in futuro
l'applicazione di configurazione come
amministratore, vi suggeriamo di selezionare
la voce Install just for me; in questo modo
I’'SDK sara utilizzabile solo dall’utente attuale
(Fig 4). Verra quindi richiesto il percorso di
installazione; potete lasciare tranquillamente
quello proposto, comunque prendetene nota
perché vi servira in seguito.

Successivamente verra chiesta la posizione
nel menu delle applicazioni; anche qui si puo
lasciare la scelta suggerita. Facendo clic su
Install verra quindi avviata l'installazione
vera e propria, che potra durare pochi minuti.
Una volta completata, fate clic su Next

e successivamente su Finish, lasciando
selezionata la casella Start SDK Manager in
modo da poter configurare I’ SDK al passo
successivo; verra quindi avviato il gestore
dell’ SDK (Fig. 5). Suggeriamo di lasciare
tutto come preselezionato, ovvero di accettare
l'installazione tipica; sarebbe possibile
eliminare alcuni package non utilizzati

nelle nostre esercitazioni, ma per semplicita
eviteremo di avvalerci di questa opzione.
Ora fate clic sul pulsante Install 19 packages
(il numero puo variare in base ai pacchetti
selezionati) e apparira 1'usuale schermata
con le licenze, che dovrete accettare facendo

&) Android SDK Too

Choose Users

Choose for which ut

Cancel

Fig. 4 — Scelta dell’utente che utilizzera il software.

. ELETTRONICA IN ~ Ottobre 2016 119

Android 5DK Manager

SDK Path: C:\lUsers
Packages

Name
Tools
Android SDK Tools

Show: || Updates/New || Installed

Obzolete

Done loading packages.

successivamente clic sul pulsante Install.
Verra quindi avviato lo scaricamento dei
pacchetti software, che potra durare parecchio
tempo.

Installazione dell’NDK

Diversamente da Processing, per esempio, le
Qt non utilizzano Java per le applicazioni

ma il C++, similmente ad Arduino. Poiche il
linguaggio standard del toolkit di Android

e il Java, occorre installare un toolkit di
sviluppo aggiuntivo (NDK) che permette

la programmazione in C++. Come “effetto
collaterale” otterremo delle applicazioni
compilate direttamente in linguaggio macchina
nativo sul nostro Android, quindi leggermente
piut veloci rispetto alle applicazioni Java: non
male, come effetto...

L” NDK (Native Development Toolkit) e
scaricabile alla pagina web http://developer.
android.com/ndk/downloads/index.html. Sono
presenti diverse versioni: scegliete quella

che corrisponde al vostro sistema operativo

Install 19 packages...

Fig. 5 — Installazione in corso da SDK Manager.

(Windows, in questo tutorial, 32 0 64 bit a
seconda della vostra versione). A differenza
dell’ SDK, il file non contiene un installer ma
un archivio auto-scompattante; occorre quindi
scaricarlo e salvarlo “vicino” al percorso di
installazione dell’ SDK (di cui avete preso nota
precedentemente). Aprite quindi la cartella

e fate doppio clic sul file appena scaricato: si
aprira un terminale provvisorio dove si vedra
scorrere una sterminata lista di file mentre
vengono estratti, in una cartella del nome simile
a questo (il nome esatto dipende dalla versione
dell’NDK): android-ndk-r10e.

Per comodita (vi tornera utile in un secondo
momento) rinominate la cartella togliendo il
numero di versione, quindi come android-ndk.
11 percorso completo dell”’ NDK sara quindi

del tipo C:\Users\nomeutente\ AppData\ Local\
Android\android-ndk, dove “nomeutente” ¢ il
nome dell’utente sotto cui avete installato il
software.

Prendete nota anche di questo percorso, perché
vi servira per la fase finale di configurazione.

120 oOttobre 2016 ~ ELETTRONICA IN -

Installazione di ANT

Ant e un tool di compilazione simile al Make
di Linux, ma scritto in Java. E necessario per
la generazione degli eseguibili per Android,
quindi va installato. Allo scopo basta scaricare Fig. 6 — Scelta della licenza di QT
il file in formato zip (il primo della lista)
reperibile su http://ant.apache.org/bindownload.
cgi e decomprimerlo in una cartella a scelta; Recommended
per comodita vi consigliamo anche qui la
cartella dove avete messo I’ SDK e I’ NDK di
Android. Anche in questo caso prendete nota
del percorso, perché vi servira in seguito.

Installiamo QT

Finalmente potete installare QT: aprite la
pagina www.qt.io, quindi fate clic sul pulsante
“Get Started” al centro dello schermo; apparira
una schermata (Fig. 6) in cui viene chiesta la
tipologia di installazione, ossia commerciale
(Commercial Deployment), sviluppo interno/
uso personale/studenti (In-house deployment,
private use or student use) oppure open source
sotto licenze LGPL o GPL (Open Source

under a LGPL or GPL license). Nel nostro caso,
volendo sviluppare programmi open source,

sceglieremo la terza opzione. Le QT sSOno 5 | gt-unified-windows-x86-2.0.2-2-online.exe

infatti gratuite per sviluppare programmi open tipo: Binary File B)

source. PR

Apparira quindi una finestra di dialogo

in cui viene chiesto se siamo certi di voler Sahafile aonula

sviluppare applicazioni open: confermiamo
con l'opzione Yes, allorché apparira quindi
una terza schermata in cui vi si chiedera se
sarete in grado di rispettare gli obbligi relativi
alle licenze LGPL o GPL, che sono piuttosto
restrittivi, imponendo la pubblicita di tutto il
sorgente delle applicazioni che svilupperete Do you want to run thie fils?
con le QT. Anche qui, scegliete Yes.
Finalmente apparira il pulsante di Download,
insieme ad altre opzioni che perd non

ci interessano, in quanto utilizzeremo
I'installatore on-line, che scarichera ed
installera tutti gli elementi necessari (Fig. 7).
Facendo clic sul pulsante Download Now
verra avviato il download dell’installer in
questione, che dovrete salvare da qualche
parte, ad esempio sul desktop (Fig. 8).

Open File - Security Warning

Salvate il file ed eseguitelo tramite il consueto Y Joutust W

doppio clic sull’icona corrispondente, allorché

vi verra richiesta la solita conferma da Fig. 9 — Finestra di dialogo per I'avvio
parte di Windows (Fig. 9). Fate clic su Run dell’esecuzione dell installer di QT.

. ELETTRONICA IN ~ Ottobre 2016 121

Login

Need a

Sign-up

I accept the

Cancel

Fig. 10 — Finestra per login o registrazione
del vostro account.

Qt Setup

allation Folder

Il be installed.

Fig. 12 — Scelta dei componenti da installare.

e vi apparira la schermata di benvenuto
dell’installazione, in cui si comunica che &
necessaria una registrazione al sito, che potra

essere anche fatta al volo nel passo successivo.
In questa fate clic sul pulsante Next e vi
apparira la richiesta di login, da usare se

siete gia registrati al sito, oppure i dati per

la registrazione (Fig. 10). Sceglieremo qui

la seconda opzione, inserendo un’indirizzo
e-mail e una password a scelta, senza
dimenticarci di accettare i le condizioni tramite
I'apposita casella.

Il passaggio di registrazione si potrebbe
saltare, ma spesso nell’utilizzo viene comodo
avere accesso al sito per aggiornamenti, help,
eccetera, quindi conviene farlo. Facendo clic
su Next (che apparira al posto dello Skip

una volta compilato il form) si passera alla
schermata successiva e contestualmente

vi arrivera una e-mail per la conferma

della registrazione. Qui, facendo clic su

Next iniziera (finalmente!) la parte finale
dell’installazione e vi verra chiesto dove volete
installare le QT; suggeriamo di mantenere la
scelta proposta, come mostrato nella Fig. 11.
Nella finestra di dialogo, facendo clic sul
pulsante Next apparira I'importante schermata
di selezione dei componenti da installare

(Fig. 12); qui suggeriamo, per non appesantire
troppo l'installazione, di deselezionare la
versione 5.4, cliccando due volte consecutive
sul quadratino corrispondente (la prima volta
diventa un simbolo di spunta, selezionando
tutti i sottocomponenti, mentre al secondo clic
li deseleziona tutti).

E inoltre indispensabile aprire la sezione 5.5
(cliccando sul triangolino a sinistra della voce)
e selezionare i componenti per Android, oltre
a quelli desktop, visto che vorremo sviluppare
applicazioni anche per i cellulari; e sufficiente
per la stragrande maggioranza dei casi
selezionare la versione Android per Armv7
(Fig. 13).

Senza quest’ultima opzione non sarete in
grado di sviluppare applicazioni Android, a
meno di non aprire 'utilita di gestione delle
QT successivamente, quindi suggeriamo
caldamente di attivarla subito. La versione
armv?7 e quella usata nella gran parte dei casi
perché e su tale architettura che si basa la
stragrande maggioranza dei dispositivi mobile
funzionanti con Android.

Lasciate pure le altre opzioni come sono state
preimpostate e fate nuovamente clic su Next;

122 Ottobre 2016 - ELETTRONICA IN -

QtSetup

Com ponents

Default

Fig. 13 — Selezione della versione Android per Armuv7.

apparira un’ulteriore richiesta di accettazione

delle condizioni, che qui omettiamo per brevita.
E sufficiente selezionare la casella di accettazione

e fare nuovamente clic su Next.

Vi verra ora chiesto il nome del menu in cui

si troveranno le applicazioni Qt; anche qui
ometteremo la schermata, & sufficiente premere
Next accettando il valore proposto (Qt).
Finalmente, nell’ultima schermata apparira
la richiesta di conferma per l'avvio
dell’installazione.

E sufficiente fare clic su Install per proseguire.

Ora iniziera lo scaricamento dei pacchetti
selezionati, che potra richiedere anche
parecchio tempo a seconda delle prestazioni
del vostro computer e della velocita della
rete (Fig. 14). Ad installazione completata

apparira la finestra di dialogo conclusiva nella

quale, lasciando selezionata la casella Launch
Qt Creator, verra eseguita ’applicazione

principale di Qt nella quale potremo iniziare a

scrivere i nostri programmi (Fig. 15).

In questa finestra, facendo clic su Finish verra

quindi lanciato Qt Creator, la cui finestra di
lavoro e illustrata nella Fig. 16.
L’applicazione Qt Creator dispone di un
tutorial, che per brevita non descriveremo in
questa sede; potete provarlo da voi facendo
clic sul pulsante Get Started Now.

Noi ci limiteremo, nelle prossime puntate di

questo corso, a creare il nostro primo progetto

d’esempio, chiamato Colibri.

Qt Setup

Cancel

Fig. 14 — Installazione di Qt in corso.

Qt Setup

Completing the Qt Wizard

inish t the rd.

Fig. 15 — Conclusione delll’installazione di Qt.

¢! Open Froject

Fig. 16 — Finestra di avvio di Qt Creator.

Impostazioni di Qt Creator

L’ultima fase dell’installazione consiste nel
fornire a Qt Creator i percorsi dei due toolkit
per Android precedentemente installati, del
toolkit di sviluppo Java (JDK) e di Ant.
Aprite quindi il menu Tools di Qt Creator

e in esso impartite il comando Options: vi
apparira la schermata illustrata nella Fig. 17,
dove occorre selezionare -nella lista proposta
a sinistra- la voce Android, in modo da
visualizzare le relative impostazioni nella parte
di destra.

Le prime tre righe in alto sono i percorsi che
dovremo introdurre; il primo (JDK location)

- ELETTRONICA IN ~ Ottobre 2016 123

Options

N

. | Environment
dovremo ricercarlo tra le

cartelle del PC, nel caso

sia gia installato; in caso
contrario e sufficiente
premere l'icona con la
freccia in gil1, a destra del
corrispondente tasto Browse,

Text Editor

keVim

| 3 Build & Run

per aprire Internet Explorer @8 Debugger
sulla pagina di scaricamento # Designe
del JDK. Analyzer
Per brevita tralasciamo B version Control

le eventuali istruzioni di
installazione, che sono
comungque disponibili nel
sito di riferimento; occorre
ricordarsi solo di installare
il pacchetto corretto (JDK)
nella versione pil1 recente
e per il sistema operativo o
64 bit nel nostro caso). Anche
qui, si tratta di scaricare un
installer ed eseguirlo. A fine
installazione, nella nostra
macchina il percorso e
risultato C:\ Program Files\
Java\jdk1.8.0_74. Nella
versione Italiana di Windows
si trovera probabilmente in
C:\Programmi\ Java\jdkxx.
yy.zz_tt, ove xx, yy, zz e tt
sono il numero della versione
di Java installato. Fate quindi
clic sul pulsante Browse
accanto alla prima casella e
ricercare il percorso che, una
volta dato I'OK, apparira
nella casella JDK location;

in alternativa e possibile digitarlo per esteso
nella medesima casella. Gli altri tre percorsi
risultano pit1 semplici, visto che ne abbiamo
preso nota precedentemente; e sufficiente
quindi scriverli nelle relative caselle. Ad
impostazione completata, la schermata sara
simile a quella mostrata in Fig. 18.

Con questo passaggio abbiamo finalmente
terminato la laboriosa installazione del sistema
di sviluppo.

Tutti i progetti realizzati tramite Qt Creator

si troveranno nella cartella Documenti; ©
comunque possibile modificarla nella sezione

utilizzato (Windows a 32 o Andreid

Android

figuratons

Android NDK

Fig. 17 — Configurazione Android.

Fig. 18 — Impostazione Android in Qt completata.

‘Build and Run’ del menu impostazioni di Qt
Creator.

Per tenere tutto in ordine suggeriamo di creare una
sottocartella chiamata Qt dentro ai Documenti e
modificare le impostazioni in modo che i progetti
vengano salvati dentro questa.

Abbiamo dunque concluso la parte iniziale

di questo corso; vi diamo appuntamento alla
prossima puntata, nella quale entreremo nel vivo
dello sviluppo descrivendo la realizzazione della
nostra prima applicazione d’esempio, per poi
passare, nelle puntate successive, alla creazione
dell’applicazione obiettivo del corso. |

124 Ottobre 2016 ~ ELETTRONICA IN .

bbiamo imparato, nella puntata precedente

di questo corso, che cosa sono e a cosa
servono le librerie Qt e con esse ci siamo proposti
di realizzare un controllo da smartphone
attraverso la connessione WiFi di un modulo
driver per LED RGBW (a luce rossa, verde, blu e
bianca) sfruttando la connettivita wireless di una
scheda Fishino. Per farlo abbiamo studiato i tool
software di contorno allo sviluppo, tra cui 'SDK
Android (indispensabile perché il nostro proposito
e realizzare un’app per smartphone basati sul
diffusissimo sistema operativo di Google) del
toolkit di sviluppo aggiuntivo (NDK) e di ANT,
che & un tool di compilazione simile al Make di
Linux, ma scritto in Java.
Arrivati a questo punto, possiamo iniziare a creare
I'applicazione: apriamo Qt Creator e nella finestra
principale facciamo clic sul pulsante New Project,

Code less.
Create more.
Deploy everywhere.

~

Creiamo la struttura
della nostra prima
applicazione con Qt
attraverso

l'utilizzo dei tool
scaricati. Seconda
puntata.

di MASSIMO DEL FEDELE

il che determinera l’apertura della schermata
visibile in Fig . 1.

Come si pud vedere esistono varie tipologie

di progetti; noi sceglieremo Application
(Applicazione) sulla sinistra e Qt Widgets
Application (applicazione grafica Qt) in centro;
sulla destra vediamo una breve descrizione del
tipo di applicazione e le piattaforme supportate
(Desktop Android).

Qui si nota gia un grosso vantaggio delle Qt :

& possibile creare un’applicazione in modalita
Desktop, collaudarla e debuggarla come

tale, senza i tempi lunghi di caricamento nel
device Android e/o nell’emulatore e, una
volta funzionante, basta cambiare modalita per

generare I’ App definitiva.

apparira una schermata (Fig. 2) per definire

Facciamo clic sul pulsante Choose e ci
- ELETTRONICA IN ~ Novembre 2016 119

Choose a template:

Projects
Application
Library

Other Project

| &ll Templates

= Qt Widgets Application

Qt Consol

ication

Qt Quick Controls Application

Supported Platforms: De

Non-Qt Project Q s 3D Application

Import Project

Files and Clas

Fig. 1 — Finestra per la creazione di un nuovo progetto.

™ Qt Widgets Application

EP> Location

Mame:

il nome dell’applicazione. Scriviamo

Colibri nell’apposita casella e accettiamo la
destinazione predefinita (¢ comunque possibile
specificarne una diversa) quindi facciamo clic
su Next.

Adesso appare una nuova finestra di dialogo
(Kit Selection) che permette di scegliere tra i
kit installati, ovvero dei sistemi di sviluppo da
utilizzare per la nostra applicazione (Fig. 3).

In pratica, ogni progetto puo utilizzare

diversi kit che corrispondono alle diverse
piattaforme supportate; nel nostro caso, avendo
installato le piattaforme per applicazioni
Desktop ed Android ci troveremo quelle voci.
Selezioniamole entrambe, visto che vogliamo
sviluppare e collaudare la nostra App sul
computer e successivamente caricarla nel
nostro terminale Android.

Scelto il kit facciamo clic su Next e ci apparira
la finestra di dialogo mostrata in Fig. 4, nella

y default from QApplication and includes an en

Browse, ..

Cancel

Fig. 2 — Definiamo nome e percorso in cui salvare I'appicazione.

quale potremo scegliere il nome per le classi

C++ che Qt Creator generera automaticamente

per noi, e la classe su cui si basera la nostra

App. Cambiamo solo il nome della classe in

Colibri, come si vede nella schermata in Fig.

4; il resto va lasciato inalterato. Il checkbox

Generate form indichera a Qt Creator di creare

la finestra principale dell’applicazione. Facendo

clic su Next apparira una finestra di riepilogo

che non dovete modificare; cliccando su Finish

verra quindi generato lo scheletro della nostra

App (Fig. 5).

Sulla sinistra potete notare 1’elenco dei file del

progetto, divisi per categorie:

- Colibri.pro & il progetto; al momento non e
necessario aprire il relativo file;

- Headers contiene tutti i files di include (.h);

- Sources contiene tutti i files sorgente (.cpp),
dei quali al momento ci interessa colibri.cpp;

- Forms contiene le schermate della nostra

o)

120 Novembre 2016 ~ ELETTRONICA IN -

s‘ 9 [Qt Widgets Appilication

Kit Selection

Location
Qt Creator can use the following kits for project Colibri:

V| Select all kits

BEP Kts

J| %) Android for armeabi-v7a (GCC 4.9, Qt 5.5.1) Details ¥

7| s Desktop Qt 5.5.1 MinGW 32bit Details ¥

Fig. 3 — Selezione dei sistemi di sviluppo con cui creare I'applicazione.

‘__9 [Qt Widgets Application

Class Information
Location

Kits Spedify basic information about the classes for which you want to generate skeleton source code files,

E» Details

Class name: Colibri]

Base dass: QMainWindow - |

Header file: colibri.h

Source file: colibri.cpp

Generate form: |V

Form file: colibri,ui

\ Next 1 | Cancel |

Fig. 4 — Assegnazione del nome alle classi.

A . colibri.cpp - Qt Creator
applicazione; aprendolo T

e facendo doppio clic su

Build Debug Analyze Tools Window Help

colibri.ui, si apre il Form 4 (HR.Colioek
K K [Colibripro .
Editor, che permette di i Headers
¢.. Sources c

modificare graficamente
I'aspetto della nostra app,
inserendo i vari Widget
(controlli) nella medesima

(Fig. 6).

o Forms

Sul lato sinistro ci sono i
Widget (controlli) disponibili,
al centro c’e la finestra
dell’applicazione (sfondo
grigio con i puntini della
griglia), mentre a destra le
proprieta dei Widget stessi.
Siccome vogliamo creare
un’app che si adatti allo schermo del nostro layout (FormLayout) che e il piui semplice da
device, iniziamo ad inserire un elemento di utilizzare; una volta che ci saremo impratichiti

colibri.cpp

Fig. 5 - Struttura base dell’applicazione.

- ELETTRONICA IN ~Novembre 2016 121

colibri.ui - Colibri - Qt Creator

File Edit Build Debug Al Took Window

a
B2l Horizontal Spacer
g Vertical Spacer
Buttons
Push Button
Tool Button
\adio Button
Check B
Comrmand Link Button
"%l Dialog Button Box

Item Vie Viodel-Based)

umn V

Item Widgets (Item-Based)

Object
4 Colibri Q Window
=@ centralWidget JWidget

Value
Colibri

NonhModal

J

)

[Preferred, Pref..
minimum 0x0
maximurm

sizelncrement

Fig. 6 - Finestra di dialogo Form Editor.

con il sistema potremo utilizzare altre tipologie
che permettono posizionamenti piu flessibili.

Il Form Layout consente di creare un semplice
dialogo costituito da varie righe, ognuna

delle quali contiene un’etichetta (Label) ed un
elemento grafico.

Trasciniamo quindi con il mouse il

Form Layout dentro la nostra finestra
dell’applicazione, ridimensioniamolo in modo
da occupare quasi tutta la finestra e trasciniamo
dentro di esso questi elementi in sequenza:
Label - Horizontal Slider - Label - Horizontal
Slider - Label - Horizontal Slider - Label -
Horizontal Slider - Label - Combo Box, avendo
'accortezza di piazzarli allinterno del Form
Layout come mostra la Fig. 7.

Fatto questo, & opportuno dare dei nomi
significativi ai vari elementi ed inserire nei
testi nelle Label; selezionandoli uno ad uno
nel riquadro in basso a destra appariranno le
proprieta degli oggetti che sono liberamente
modificabili. Per le Label, la proprieta da
cambiare & la Text, mentre per il nome
dell’ogggetto si puo lasciare quello predefinito.

Per i vari controlli (Sliders e Combo Box)
occorre invece cambiare i nomi degli oggetti;
noi scegliamo redSlider, greenSlider,
blueSlider, whiteSlider e deviceCombo
rispettivamente (Fig. 8). Adesso, facendo clic
con il tasto destro del mouse sullo sfondo
grigio del form bisogna selezionare Lay out e
Lay out in a form layout in modo da adattare le
dimensioni alla schermata.

Fatto questo, avete completato la costruzione
dell’interfaccia grafica; occorre ora scrivere il
codice per farla funzionare.

Meccanismo signal-slot

Le Qt utilizzano un interessante meccanismo,
non standard nel C++ (che richiede un
preprocessing del codice, un po’ come quanto
succede nell'IDE di Arduino), cosa fatta
automaticamente da Qt Creator tramite 1'uso
dell’applicazione qmake: il sistema signal-slot.
In pratica, ogni widget (elemento grafico)

e in grado di generare diversi tipi di eventi
(signals) a seconda delle interazioni dell'utente;
questi segnali possono essere connessi a pezzi

122 Novembre 2016 ~ ELETTRONICA IN -

colibri.ui - Colibri - Qt Creator

File Edit Build Debug Analyze Tools Window Help

—
] Tab Widget
a Stacked Widget
[Frame
- I Widget
[B) DI Area
(1 Dock Widget
QAxWidget
Input Widgets
Combo Box
Font Combo Box
Line Edit
Text Edit
Plain Text Edit
-/ Spin Box
; Double Spin Box
Time Edit
| Date Edit

Date/Time Edit

e T

-TextLabeI | ‘
TextLabel D
TextLabel H
TextLabel U

MrextLabel ‘

Object
4 Colibri
4 5% centralWidget
4 formLayout
comboBox
horizontalSlider
horizontalSlider_2
horizontalSlider_3
horizontalSlider_4
label
label_2

lakhal 2

‘ m

Action Editor Signals & Slots Editor

formLayout : QFormLayout
Property Value
a

layoutName
layoutLeftMargin
layoutTopMargin
layoutRightMargin
layoutBottomMargin
layoutHorizontalSpac...

layoutVerticalSpacing

layoutFieldGrowthPol... AllNonFixedFiel...

De
jo

Ig|lssues Iﬂ Search‘..lﬁ Applic... lEH| Compil... IM QML/]... le Gener..

colibri.ui - Colibri - Qt Creator

Fig. 7 - Elementi nel Form Layout.

File Edit Build Debug Analyze Tools Window Help

« i ColiD

1 Tab Widget

| a Stacked Widget
1:—__” Frame

‘ ‘ Widget

[H moi1 Area

E Dock Widget

o1 QAxWidget

4 Input Widgets

E Combo Box

E Font Combo Box

g fo §D

[#EY) Line Edit
[AT) Text Edit
|AL| Plain Text Edit
(23 spin Box

|l_:J Double Spin Box

&3] Time Edit
i DateEdit

7 Date/Time Edit

A 17

T EL

Rosso _ i

Verde _|

Object
4 59 centralWidget
4 35 formLayout

blueSlider
deviceCombo
greenSlider
label
label_2
label_3
label_4
label 5
redSlider
whiteSlider

mn

formLayout

< T

Action Editor Signals & Slots Editor

Shortcu

deviceCombo : QComboBox
Property Value
a

objectName

enabled v
sizePolicy

minimum&ize 0x0

“trl+ I@[ssu&sl@lSeaﬂch‘..[@ Applic... lﬁjc-;\mpitm [l u

Fig. 8 — Nomi dei controlli dell’app.

. ELETTRONICA IN ~Novembre 2016 123

deviceCombo

[Preferred, Fixed, ...

Go to slot

Select signal

OK

Fig. 11 - Dichiarazione della funzione.

di codice C++, chiamati slot. E un po” come
connettere un azione al codice che la deve
gestire. Il meccanismo signal-slot e gestibile

sia manualmente, creando gli slot nel codice

e collegandoli con una funzione connect,

sia tramite l'interfaccia grafica, il che e piu
semplice ma produce come effetto collaterale
un codice pil1 lungo, creando uno slot per

ogni segnale connesso. Sceglieremo qui, per
semplicita, questa strada.

Nel layout editor clicchiamo col tasto destro
sul primo slider (il redSlider) e nel menu che

si apre selezioniamo Go to slot; si aprira la
finestra di dialogo mostrata in Fig. 9.
Selezioniamo quindi la voce sliderMoved(int) e
facciamo clic su OK: si aprira automaticamente
il file colibri.cpp con il cursore posizionato
dentro alla funzione che gestira il nostro
segnale (Fig. 10). Aprendo il file Colibri.h si
potra notare che & stata correttamente aggiunta
la dichiarazione della nostra funzione (Fig. 11).
Notate che Qt Creator fornisce un metodo
veloce per creare lo scheletro del codice.

:on_redSlider sl

ten_blueSlider sliderMoved(

Fig. 12 - File Colibri.cpp dopo la creazione degli slot.

| Colibni

Rosso

Verde | |

Blu
Bianco | |

LED

Fig. 13 - Gli slider dell’app ancora inattivi.

Proseguiamo creando altre connessioni, come
fatto per il primo segnale; dovremo gestire
tutti i segnali di tipo sliderMoved() di tutti

gli slider dell’interfaccia grafica e il segnale
currentIndexChanged(int) per il combo box.
Una volta completata la creazione degli slot,

ci troveremo nel file Colibri.cpp la situazione
mostrata in Fig. 12.

Abbiamo qui completato la parte
“semiautomatica” della nostra applicazione;
resta ora da scrivere il codice per implementare
le funzioni. Volendo ¢ gia possibile

testare il funzionamento dello scheletro
dell’applicazione; allo scopo & sufficiente
cliccare sull’icona in basso a sinistra con il
triangolino verde e, dopo qualche istante,
apparira la finestra della nostra App.
Ovviamente, non avendo ancora scritto
nemmeno una riga di codice, lo spostamento
degli slider non sortira alcun effetto (Fig. 13).
Quindi dobbiamo scrivere il codice che animera
I'app, ma di questo ci occuperemo nella terza
ed ultima puntata di questo corso. [|

124 Novembre 2016 ~ ELETTRONICA IN .

e |

bbiamo conosciuto le librerie Qt e i tool di

sviluppo che ci servono per realizzare la
nostra app e con essi abbiamo costruito quello
che abbiamo definito lo “scheletro” della nostra
applicazione per il controllo da smartphone
Android (o da PC con installato Windows), tramite
link WiFi e la scheda Fishino di un modulo RGBW
Colibri. Nella seconda puntata di questo tutorial
abbiamo anche spiegato come creare 'interfaccia
grafica, che abbiamo costruito insieme e che
per il momento ¢ inattiva e naturalmente potra
funzionare solo dopo che avremo scritto il codice
per “animarla”; abbiamo anche introdotto il
sistema signal-slot, dove ogni widget (elemento
grafico) e in grado di generare diversi tipi di eventi
(signals) a seconda delle interazioni dell’utente
(tali segnali possono essere connessi a pezzi di
codice C++, chiamati slot, come un’azione viene

Code less.
(reate more.
Deploy everywhere.

~

Scriviamo finalmente

il firmware della
nostra applicazione

e lo sketch per Fishino.
Ultima puntata.

di MASSIMO DEL FEDELE

correlata al codice che la deve gestire).

In questa puntata conclusiva del nostro corso
completiamo il nostro lavoro, mettendo mano

al codice e scrivendo le parti mancanti nei file
Colibri.h e Colibri.cpp accennati nella puntata
precedente; ma prima di farlo aggiungiamo il
modulo network al file del progetto, visto che
avremo bisogno dei componenti per accedere ai
socket UDP; il Listato 1 mostra il contenuto del
file Colibri.pro al quale abbiamo aggiunto la sola
parola network dopo QT +=.

Guardate adesso il Listato 2, contenente il file
Colibri.h al quale abbiamo aggiunto innanzitutto
le costanti in UDP_PACKET_CODES contenenti i
codici dei comandi da inviare alla scheda Fishino
nei pacchetti UDP; notate che abbiamo previsto tre
codici (escluso il UDP_EMPTY che & un comando

nullo): il primo serve per impostare i valori di J

- ELETTRONICA IN ~ Dicembre 2016 / Gennaio 2017 133

+= network core gui

greaterThan (QT_MAJOR_VERSION, 4): QT += widgets

TARGET = Colibri
TEMPLATE = app

SOURCES += main.cpp\
colibri.cpp

HEADERS += colibri.h

FORMS += colibri.ui

CONFIG += mobility
MOBILITY =

luminosita del LED RGBW, il secondo per

leggerli ed il terzo & il comando di discovery che

permette di localizzare tutte le board Fishino
presenti in rete che eseguono lo sketch Colibri.
Successivamente abbiamo inserito il numero
di porta UDP utilizzata per le comunicazioni
(e 47777) ed alcune funzioni a basso livello
impiegate per inviare e ricevere pacchetti UDP,
oltre ad alcune ad alto livello per impostare

o leggere i valori di luminosita e per rilevare,
ancora una volta, le schede Fishino collegate in
rete wireless.

Veniamo adesso al codice sorgente vero e
proprio, che e quello visibile nel Listato 3:
stiamo parlando del file Colibri.cpp.

Qui possiamo vedere I'implementazione delle
varie parti dell’App; in particolare, notiamo
che nelle funzioni degli slot, che in precedenza
erano vuote, abbiamo inserito le chiamate a
setDeviceValues per gli slider dell’interfaccia
grafica e getDeviceValues per il combo box,
in modo da poter modificare le luci scorrendo
gli slider e leggere i valori impostati quando si
seleziona una nuova luce tramite il combo box.
Le funzioni ad alto livello creano un pacchetto
UDP costituito da una serie di byte, dei quali

il primo ¢ il codice di comando, il secondo &

il numero di device (va definito perché ogni
scheda Fishino connessa in rete e in grado di
comandare pil1 lampade, ovvero piu controller
Colibri) mentre i rimanenti dipendono dal
comando stesso e possono essere vuoti. Ad

esempio, le linee di codice:

// build the needed query UDP packet
OByteArray packet;
packet .append (UDP_GETLIGHT) .append (device) ;

// send the packet
sendUdpPacket (packet, addr) ;

creano un array di byte dinamico

(QByteArray) e vi inseriscono (append) il
comando per leggere i valori di luminosita
(UDP_GETLIGHT) nel device (device)
richiesto. Il pacchetto viene quindi spedito
(sendUdpPacket) alla scheda Fishino
caratterizzata dall’indirizzo IP richiesto (addr).
Sempre degno di nota ¢ il codice nel costruttore
Colibri::Colibri() che inizializza un socket Udp
e si mette in ascolto di pacchetti sulla porta
specificata, realizzando quindi un semplice ma
efficace server UDP:

// initialize UDP socket
udpSocket = new QUdpSocket (this) ;
udpSocket->bind (UDP_PORT, QUdpSocket::ShareAddress) ;

Ultima, ma non in ordine di importanza, e la
funzione discoverDevices() che si occupa di
rilevare tutte le schede Fishino connesse al
sistema. Questa sfrutta una particolarita del
protocollo UDP, vale a dire la possibilita di
inviare un pacchetto di Broadcast, ovvero non
diretto ad un particolare IP ma a tutti gli IP
della rete locale.

La funzione in questione invia un pacchetto di
discovery in broadcast e si mette in attesa delle
risposte da parte delle schede Fishino, ciascuna
delle quali deve comunicare, in breve tempo,

Consentire debugging USB?

Limpronta della chiave RSA del PC
& Fig. 1
F— : Richiesta di

Consenti sempre questo PC

134 Dicembre 2016 / Gennaio 2017 ~ ELETTRONICA IN -

autorizzazione.

la propria presenza nella rete ed il numero di
lampade RGBW (ovvero di controller Colibri)
ad essa connesse.

Fatto questo, le informazioni ricevute vengono
utilizzate per riempire il combo box, in modo #include <QMainWindow>
da poter selezionare la lampada RGBW (il
controller Colibri) su cui intervenire con I’App.
Per ragioni di spazio non approfondiamo
ulteriormente il codice: le Qt contengono

un insieme estesissimo di funzionalita per

#include <QUdpSoc

// udp packet codes
dici nei pacchetti UDP

UDP_EMPTY

descrivere le quali non basterebbero 10 numeri UDP_SETLIGHT

della rivista. Contengono comunque un’ottima UDP_GETLIGHT =
. N UDP FIND

documentazione nella quale si potranno cercare =

le classi utilizzate e tutti gli approfondimenti del } UDP_PACKETS_CODES;
caso.

Il programma e stato volutamente mantenuto
semplice, evitando alcune funzionalita che
sarebbero indispensabili in un’applicazione
completa, quali 'interrogazione delle lampade

47777

. . “ olibri : public QMainWindow

RGBW entro un certo intervallo di tempo (cio, SR
allo scopo di controllare che i valori non siano Q_OBJECT
stati cambiati tramite un’altra applicazione o

. . . publi
eseguita in parallelo), ed un sistema per licit Colibri (QWi *parent = 0);
modificare i nomi delle lampade che adesso ~Cetfant
appaiono nel formato IP:nn, ovvero vengono et Sl

visualizzate tramite il numero di IP e di device void on redSlider sliderMoved(int position);
all'interno della stessa scheda Fishino.

Bene, a questo punto possiamo affermare che la
nostra applicazione & terminata!

Ma ora viene spontanea una domanda: void on whiteSlider sliderMoved (int position);
“non volevamo fare un’App per il nostro
smartphone?” Ebbene....presto fatto! Il bello
delle Qt sta proprio qui: basta cambiare il

kit di compilazione (vedete come fare nella
prima puntata) ed il nostro programma per
PC desktop Windows viene istantaneamente

void on greenSlider sliderMov (int position);

void on blueSlider sliderMoved(int position);

void on deviceCombo currentIndexChanged(int index);

::Colibri

QHostA > , quintl6 &port);
QByteArray UdpPacket (quintl6 timeout) ;

d colibri device

Desktop Qt 5. 5. 1 MinGW 32bit

#endif // COLIBRI H

Fig. 2 - Esecuzione dello scheletro del programma.

- ELETTRONICA IN ~ Dicembre 2016 / Gennaio 2017 135

Mﬁo 3 trasformato in un’app per Android!
Prima di tutto, pero, & d’obbligo una premessa:

affinché tutto cio sia possibile occorre attivare la
“modalita sviluppatore” nel nostro cellulare, poi
abilitare I'esecuzione di applicazioni non fidate,
Colibri::Colibri(QWidget *parent) : altrimenti non potremo caricare la nostra app.

QOMainWindow (parent) , P . 1 N . d H d 11 1 < dff t

91 (new Ui::Colibri) oiche ogni modello di cellulare e differente,

consigliamo una ricerca in Internet per scoprire

qual e la procedura corretta per attivare la
wil=>redlil dckr=>seilinlmm (O) 7 modalita sviluppatore sul vostro modello di

ui->redSlider->setMaximum (255) ;
ui->greenSlider->setMinimum (0) ; Smartph0ne~
u}—>greens}1der—>setl\l4a>.<1mum (255) 2 Fatto questo, colleghiamo 11 telefono al
ui->blueSlider->setMinimum(0) ;
ui->blueSlider->setMaximum (255) ;
ui->whiteSlider->setMinimum(0) ;
ui->whiteSlider->setMaximum (255) ;

#include “colibri.h”
#include “ui_colibri.h”

#include <QTime>

ui->setupUi (this) ;

Select Android Device

// initialize UDP socket
udpSocket = new QUdpSocket (this) ; Compatible devices
udpSocket->bind (UDP_PORT, QUdpSocket::ShareAddress);

// discover available devices
discoverDevices () ;

}

Alway this device for architectur 7
Colibri::~Colibri () Always use this device for architecture armeabi-v7a

{ Refresh Device List Create Android Virtual Device
delete ui;

}

void Colibri::on redSlider sliderMoved(int /* position */)
{

setDeviceValues () ;

}

void Colibri::on greenSlider sliderMoved (int /* position */)
{

setDeviceValues () ;
}

void Colibri::on blueSlider sliderMoved(int /* position */)

{

setDeviceValues () ;

}

void Colibri::on whiteSlider sliderMoved(int /* position */) .
(Bianco

setDeviceValues () ;
’ LED
void Colibri::on_deviceCombo_currentIndexChanged _
int /* index */)
{

getDeviceValues () ;
}

// send an UDP packet to an host

void Colibri::sendUdpPacket (QByteArray const &packet, computer utilizzato per 10 sviluppo tramite
QHostAddress addr) 4

{ il cavo USB: dovrebbe apparire sullo schermo
QUdpSocket *sock = new QUdpSocket; : : : : . . .
Soi v lieDa oo (haciet | Sone WDENEORTI una richiesta di autorizzazione s1m1!e a quella
delete (sock) ; proposta dalla Fig. 1. E indispensabile accettare
tale richiesta; consigliamo inoltre di selezionare
// wait for and get an UDP packet from host la casella “Consenti sempre da questo PC” per

OByteArray Colibri::receiveUdpPacket (quintl6 timeout, _ . . e .
OHostAddress &sender, quintl6 &port) evitare ulteriori richieste future.

{ Nel caso la schermata non appaia, scollegare
QOByteArray res; .
res.clear () e ricollegare lo smartphone dopo qualche
secondo.

}

(Continua)

136 Dicembre 2016 / Gennaio 2017 ~ ELETTRONICA IN -

Nella schermata che appare (riferitevi alla Fig. 2)
premete sul simbolo del PC che appare in basso
a sinistra, sopra il triangolino verde che avete
usato in precedenza per eseguire lo scheletro
del programma; poi selezionate il Kit Android
e l'icona del PC si trasformera nell’usuale icona
Android. A questo punto e sufficiente premere
il solito triangolino verde (RUN) per caricare
I'applicazione sullo smartphone; la prima volta
che verra fatto cio, nello schermo del computer
apparira una finestra di dialogo contenente la
lista dei dispositivi Android connessi (Fig. 3).
Nel nostro caso abbiamo solo un device, quindi
la scelta e obbligata, ma se non fosse cosi
dovrete scorrere fino a selezionare il device

con cui state operando. Mettendo il segno di
spunta sulla casella “Always use this device....”
potremo evitare ulteriori richieste di scelta in
futuro. Il programma verra dunque ricompilato
in formato Android, caricato sul dispositivo e
lanciato (Fig. 4).

Come potete notare, a fronte di un’installazione
piuttosto laboriosa le Qt offrono un vantaggio
enorme nello sviluppo delle applicazioni
portabili tra vari device; dati i limiti di spazio

a disposizione ne abbiamo ovviamente solo
saggiato le potenzialita, ma in rete & disponibile
una documentazione abbondante, ed in seguito
svlilupperemo altre applicazioni con questo
toolkit. Terminato lo sviluppo dell’app Android,
passiamo ora allo sketch che dovra essere
caricato sulla scheda Fishino per far funzionare
il controllo ed alle connessioni da effettuare con
il driver Colibri (Listato 4).

Lo sketch per Fishino
II firmware da caricare & veramente corposo e
il relativo listato occuperebbe diverse pagine:
per uno spazio che in questo numero non
abbiamo e che esigenze grafiche non si potrebbe
trovare. Quindi per conciliare questa esigenza
inseriremo qui solo i punti salienti dello sketch,
che & comunque scaricabile per intero dal nostro
sito web wwuw.elettronicain.it.
Ad inizio sketch, dopo i soliti include (#include
“Fishino.h”, #include “SPLh”, #include “Flash.h”
e #include “EEPROM.h”) troviamo la seguente
porzione di codice:

// ogni colibri richiede 4 uscite PWM
// questo array & utilizzato per connettere le
uscite con 1 4 colori

Listato 3 (segue)

// wait for incoming answers
QoTi -;

timer. rt(
while (timer.

sed () < timeout)

return

return res;

OByteArray Colibri::
QHostAddress
quintl6 port;
return receiveUdpPacket (timeout,

ost;

void Colibri:

{

erDevices ()

// build UDP discovery packet
QByteArray arr(1l, UDP_FIND);
sendUdpPacket (arr, QHostAddr

// wait for incoming ar
OByteArray res;
do

the packet
\d s host;
quintlé port;
re recei
gDebug () <<

pPacket (500,

// if not done,
if(!'res.s

// if packet has a
//
//

continue;

QString
for (int k =

single byte,

veUdpPacket (quintl6 timeout)

host, port);

it’s

quint8 const *)

DP_FIND)

quint8 nDevic
for (quint8 iDev 0;
iDev++)
{
// device numbe
quint8 devNum

QString name

(Continua)

*resPtr++;
iDev <

nDevi

: :Broadcast) ;

host, port);

our _

C

har *)resPtr)

- ELETTRONICA IN ~ Dicembre 2016 / Gennaio 2017 137

typedef uint8_t DEVICE_CONNECTIONS [4] ;
host.toIPv4Address () ;

>addItem (na list); che definisce il tipo DEVICE_CONNECTIONS
come un array di 4 numeri interi, che
corrispondono agli altrettanti I/O digitali ai
quali si vuole connettere il modulo controller
RGBW Colibri.

Successivamente troviamo le usuali variabili
riguardanti la connessione wireless (SSID,
PASSWORD, IP, eccetera) e dopo, la porzione
di codice mostrata nel Listato 4, nella quale
viene definita la porta UDP di comunicazione
bobox data ed e rappresentata la mappatura tra i controller
Colibri connessi alla scheda Fishino e gli I/O cui
fisicamente si collegano; in questo caso, come
specificato nei commenti, abbiamo duplicato
lo stesso device per motivi didattici, mancando
sufficienti PWM per connettere due device.
Pitu1 avanti troviamo la variabile che realizza il
server UDP e le costanti che identificano i vari
pacchetti scambiati :

// il client/server UDP
FishinoUDP udp;

// codici nei pacchetti UDP

typedef enum

{
UDP_EMPTY =0,
UDP_SETLIGHT
UDP_GETLIGHT
UDP_FIND = 0x55

lue (*packP++) ;
etValue (*p P++) ;
*packP++) ;

[
N =

} UDP_PACKETS_CODES;

Seguono alcune routine (Listato 5) che
processano i singoli pacchetti, che omettiamo
per brevita, descrivendo qui solo la piu1
interessante, ovvero quella che risponde ad
una richiesta di broadcast trasmettendo i dati
del device connesso al server, permettendone
l'identificazione automatica.

Descriviamo infine il “cuore” dell’applicazione,
ovvero la funzione che si occupa di identificare
i pacchetti ricevuti e ad inviarli alle rispettive
funzioni di gestione; la vedete nel Listato 6.
Nel Setup(), a parte le consuete inizializzazioni

gint8 r, g, b,

number from combobox data

ntData ()
gint8 device list[0] .value<

QHostAd« (list[1].v > () ; avviamo il server UDP:

// build the needed L .) .
. // inizia 1’ascolto dei pacchetti UDP alla porta specificata

Serial << F(“Starting connection to server...\n”);
udp.begin (UDP_PORT) ;

Invece nel loop controlliamo 1'eventuale
arrivo di pacchetti UDP e, nel caso, li leggiamo

138 Dicembre 2016 / Gennaio 2017 ~ ELETTRONICA IN .

listatolh

// inserire qui la porta UDP in attesa dei pacchetti
#define UDP_PORT 477717

// inserire qui il nome dell’applicazione che sara inviato al client dopo la richiesta di discovery
#define APP_NAME “Mishnlights”

connessioni tra gli output ed i colibri
// ogni colibri richiede 4 uscite PWM (R, G, B, W)
// siccome Fishino ha solo 6 PWM disponibili, 1li abbiamo semplicemente
// duplicati per mostrare nell’App 2 luci connesse
DEVICE CONNECTIONS DEVICES[] =
{
{3, 5, 6, 9},
{3, 5, 6, 9},
}i

Listato S

// processa i pacchetti con codice FIND
bool processFind(uint8_ t const * packet)
{
Serial << F(“GOT FIND PACKET\n”) ;
char buf [DEVICE_NAME MAX + 1];

uintl6 t packetlLen = 2;

// calcola la dimensione del pacchetto di risposta
for(uint8 t i = 0; i < numDevices; i++)
{
Serial << F(“Reading name of #”) << (int)i << F(“ device\n”);
if (!getDeviceName (i, buf, DEVICE_NAME MAX))
return false;
Serial << F(“GOT :”) << buf << “\n”;
packetLen += strlen (buf) + 2;
}
Serial << F(“PACKET SIZE : “) << packetLen << “\n”;
uint8 t *packet = (uint8 t *)malloc(packetLen);
uint8 t *packP = packet;
*packP++ = UDP FIND;
*packP++ = numDevices;
for (uint8 t i = 0; i < numDevices; i++)
{
// first the device number
*packP++ = 1i;

// then the device name
getDeviceName (i, buf, DEVICE NAME MAX) ;
strcpy ((char *)packP, buf);
packP += strlen(buf) + 1;

}

// reinvia il pacchetto al mittente

Serial << F(“Sending packet to “) << udp.remoteIP() << “ at port “ << UDP_PORT << “\n”;
udp.beginPacket (udp.remoteIP (), UDP_PORT) ;

udp.write (packet, packetLen) ;

return udp.endPacket () ;

e li inviamo alla processPacket() vista in

precedenza; la rispettiva porzione di codice e

visibile nel Listato 7.

La personalizzazione dello sketch e

semplicissima: nella parte iniziale di che contiene la mappatura dei canali RGBW
configurazione, a parte i soliti dati della rete con i corrispondenti pin di Fishino, che devono

WiFi, occorre inserire questa struttura: essere dotati di uscita PWM.
Nell’esempio abbiamo semplicemente duplicato
DEVICE_CONNECTIONS DEVICES[] = una lampada sugli stessi pins, in mancanza

- ELETTRONICA IN ~ Dicembre 2016 / Gennaio 2017 139

bool

{

_SETLIGHT:
return p

case UDP_GETLIGHT:
return pro

UDP_FIND:

return pre ssFind (packet) ;

default:
1 << F(“UNKNOWN PAC
false;

degli 8 necessari per due lampade; in un

futuro articolo proporremo una versione

estesa dello sketch pensata per consentire,
tramite 1'uso della scheda di ampliamento
OCTOPUS (la quale dispone di ben 16 uscite
PWM), di controllare quattro Led RGBW per
ciascuna scheda Fishino, o fino a 32 LED RGBW
sovrapponendo un massimo di otto interfacce.
Il funzionamento dello sketch e piuttosto
semplice: nel setup, dopo la connessione alla
rete WiFi (o la creazione di un Access Point, se
si preferisce) e dopo aver definito tutte le uscite
PWM della scheda Fishino ed averle azzerate,
viene messo in ascolto un client UDP sulla porta
47777:

udp .begin (UDP_PORT) ;

Nel loop si esegue ciclicamente un controllo
su eventuali pacchetti ricevuti e, nel caso,

T v

<< (int)type << “\n”;

<< packetSize << F(“ bytes\n”);

viene chiamata la funzione processPacket()

che esamina i dati nel pacchetto e li smista

alla funzione di gestione corrispondente al
primo byte in esso contenuto: processSetLight,
processGetLight e processFind, rispettivamente,
per impostare o leggere il valore dei PWM o per
segnalare la presenza della scheda nella rete.

Si puo notare che sono previste I'impostazione

e la lettura di un “nome luce” da EEPROM;
questa e una funzionalita in via di sviluppo, sia
dal lato app che dal lato Fishino, che permettera
di dare un nome alle varie utenze, le quali
attualmente vengono visualizzate solo tramite
numero di indirizzo IP.

Bene, con questo abbiamo terminato la lunga,
ma speriamo utile, esposizione di questo
progetto, che, siamo certi, sara stata I'occasione
per conoscere le librerie QT e il mondo di tool di
sviluppo che ne permette 1'utilizzo ottimale. [l

140 Dicembre 2016 / Gennaio 2017 ~ ELETTRONICA IN -

