

Elettronica In ~ Ottobre 2016 117

Tu
tor

ial
 Qt

: i
st

ru
zio

ni
 p

er
 l’

us
o

1
e librerie Qt consistono in una serie completa
di strumenti software per lo sviluppo di

applicazioni multipiattaforma in C++ e sono
state sviluppate inizialmente dalla Trolltech,
una software house finlandese acquisita
successivamente dalla Nokia ed ora nota come
Qt-Company. Dopo varie vicissitudini sulle
quali sorvoliamo, le librerie sono ora disponibili
all’utente con due tipi di licenza: GPL per
software open source, gratuita, ed a pagamento
per sviluppo di applicazioni closed source.
Grazie alle Qt sono state sviluppate innumerevoli
applicazioni open source tra cui, per esempio, il
desktop KDE peri vari sistemi operativi Linux;
questo ha portato alla disponibilità di un’enorme
quantità di codice di ottima qualità.
Proprio perché il codice disponibile basato
sulle Qt è a dir poco infinito, in questo corso ci

limiteremo alla loro installazione e ad un esempio
pratico di utilizzo per sviluppare un’applicazione,
eseguibile sia su PC desktop che su un terminale
Android, in grado di controllare tramite WiFi uno
o più LED multicolore (RGBW, ossia rosso, verde,
blu e bianco) connessi alle schede Fishino che vi
abbiamo presentato nei precedenti fascicoli di
Elettronica In.
Come accennato sopra, per lo sviluppo di
codice open source e/o ad uso personale le Qt
sono scaricabili gratuitamente ed utilizzabili
senza alcun limite; purtroppo va detto che i
costi delle licenze per lo sviluppo di software
proprietario non sono proprio abbordabili per uno
sviluppatore singolo...
Le Qt sono composte da una completa serie di
librerie software, un sistema di sviluppo (IDE),
chiamato Qt-Creator, contenente al suo interno

 di MASSIMO DEL FEDELE

Realizziamo un’applicazione,
eseguibile sia su PC che su un
terminale Android, in grado di

controllare tramite WiFi moduli a
LED multicolore

connessi a una scheda Fishino.
Lo faremo utilizzando le Qt,

che da questa prima puntata vi
faremo conoscere.

L

Tu
tor

ial
 Qt

: i
st

ru
zio

ni
 p

er
 l’

us
oTutorial Qt : istruzioni per l’uso

118 Ottobre 2016 ~ Elettronica In

uno strumento per la gestione dei progetti (un
po’come l’IDE di Arduino), un editor grafico
per le schermate delle applicazioni, un selettore
per passare da una piattaforma all’altra (per
esempio, da desktop ad Android) e molto altro.
Le librerie disponibili coprono praticamente
qualsiasi settore dell’informatica, ed in rete
si trovano componenti aggiuntivi installabili
nell’IDE nel caso se ne presenti la necessità.
È anche possibile estendere il numero di
widget (controlli) disponibili tramite plugin
(estensioni), cosa che tratteremo in un futuro
articolo, essendo l’installazione dei medesimi
non proprio semplicissima.

Fishino & Colibrì
Controllo di LED RGBW tramite dispositivi mobili
Con questo progetto mostriamo l’utilizzo
di vari tool di sviluppo applicati alla nostra
scheda Fishino la quale, abbinata ad uno o
più moduli Colibrì (si tratta di driver per LED
RGBW che abbiamo descritto nel fascicolo
n° 202) consente il controllo di luci o qualsiasi
altro apparecchio tramite un cellulare Android
oppure un’applicazione su Personal Computer
connesso in rete.
Cogliamo l’occasione per sfruttare il protocollo
di comunicazione UDP, recentemente
introdotto nel firmware e nelle librerie di

Fishino, che presenta notevoli vantaggi rispetto
al protocollo TCP utilizzato abitualmente, in
particolar modo se si opera in una rete locale.
L’applicazione consiste in 2 moduli, uno che
gira su Desktop/Android, sviluppato tramite
le ottime librerie Qt, che andremo a descrivere
abbastanza in dettaglio, e l’altro consistente
in un semplicissimo sketch che gira sul
nostro Fishino. L’App è in grado di rilevare
autonomamente tutti i Fishini connessi in rete
ed elencarne sul cellulare le luci connesse,
permettendo la selezione del dispositivo su cui

Fig. 1 – Ricerca dell’SDK per QT.

Fig. 2 – Avvio dell’installazione dell’SDK.

Elettronica In ~ Ottobre 2016 119

Tu
tor

ial
 Qt

: i
st

ru
zio

ni
 p

er
 l’

us
oTutorial Qt : istruzioni per l’uso

operare e, relativamente a questo, il cambio di
luminosità dei 4 canali tramite 4 sliders.
L’installazione del sistema di sviluppo Qt +
Android risulta abbastanza laboriosa ma, se ci
seguirete fino in fondo, vi accorgerete che una
volta superato lo scoglio iniziale lo strumento è
efficacissimo per creare applicazioni facilmente
trasportabili tra i vari dispositivi al prezzo di
un semplice clic.
Potrete quindi sviluppare la vostra App sul
desktop, collaudarla, eseguirne il debug e una
volta pronta, caricarla sul cellulare e/o un
emulatore senza dover cambiare una sola riga
di programma.

Installazione del sistema di sviluppo per Android
Le Qt si appoggiano, per quanto riguarda
lo sviluppo Android, sull’ SDK di Google,
reperibile sul web all’indirizzo https://
developer.android.com/sdk/index.html#Other.
Poichè utilizzeremo le Qt per sviluppare
le nostre applicazioni, non ci interessa il
pacchetto Android Studio ma soltanto l’ SDK;
selezioneremo quindi la voce SDK Tools
Only e, di questa, la versione raccomandata
(recommended) che dipende dal sistema
operativo in uso (Fig. 1).
Selezioniamo quindi la prima voce, quella con
la scritta (Recommended). Apparirà l’usuale
schermata con le condizioni del servizio, da
accettare, e quindi un pulsante di download
che avvierà lo scaricamento dell’installatore.
Salviamo anche qui l’installer sul desktop ed
eseguiamolo (Fig. 2).

Fig. 3 – Verifica della versione di Java presente nel computer. Fig. 4 – Scelta dell’utente che utilizzerà il software.

L’installer rileverà la versione attuale di
Java installata nel computer e, se precedente
a quella richiesta, fornirà l’avviso visibile
nella finestra di dialogo in Fig. 3. Vi verrà
ora chiesta la tipologia di installazione:
per evitare di dover eseguire in futuro
l’applicazione di configurazione come
amministratore, vi suggeriamo di selezionare
la voce Install just for me; in questo modo
l’SDK sarà utilizzabile solo dall’utente attuale
(Fig 4). Verrà quindi richiesto il percorso di
installazione; potete lasciare tranquillamente
quello proposto, comunque prendetene nota
perché vi servirà in seguito.
Successivamente verrà chiesta la posizione
nel menu delle applicazioni; anche qui si può
lasciare la scelta suggerita. Facendo clic su
Install verrà quindi avviata l’installazione
vera e propria, che potrà durare pochi minuti.
Una volta completata, fate clic su Next
e successivamente su Finish, lasciando
selezionata la casella Start SDK Manager in
modo da poter configurare l’ SDK al passo
successivo; verrà quindi avviato il gestore
dell’ SDK (Fig. 5). Suggeriamo di lasciare
tutto come preselezionato, ovvero di accettare
l’installazione tipica; sarebbe possibile
eliminare alcuni package non utilizzati
nelle nostre esercitazioni, ma per semplicità
eviteremo di avvalerci di questa opzione.
Ora fate clic sul pulsante Install 19 packages
(il numero può variare in base ai pacchetti
selezionati) e apparirà l’usuale schermata
con le licenze, che dovrete accettare facendo

Tu
tor

ial
 Qt

: i
st

ru
zio

ni
 p

er
 l’

us
oTutorial Qt : istruzioni per l’uso

120 Ottobre 2016 ~ Elettronica In

successivamente clic sul pulsante Install.
Verrà quindi avviato lo scaricamento dei
pacchetti software, che potrà durare parecchio
tempo.

Installazione dell’NDK
Diversamente da Processing, per esempio, le
Qt non utilizzano Java per le applicazioni
ma il C++, similmente ad Arduino. Poichè il
linguaggio standard del toolkit di Android
è il Java, occorre installare un toolkit di
sviluppo aggiuntivo (NDK) che permette
la programmazione in C++. Come “effetto
collaterale” otterremo delle applicazioni
compilate direttamente in linguaggio macchina
nativo sul nostro Android, quindi leggermente
più veloci rispetto alle applicazioni Java: non
male, come effetto...
L’ NDK (Native Development Toolkit) è
scaricabile alla pagina web http://developer.
android.com/ndk/downloads/index.html. Sono
presenti diverse versioni: scegliete quella
che corrisponde al vostro sistema operativo

(Windows, in questo tutorial, 32 o 64 bit a
seconda della vostra versione). A differenza
dell’ SDK, il file non contiene un installer ma
un archivio auto-scompattante; occorre quindi
scaricarlo e salvarlo “vicino” al percorso di
installazione dell’ SDK (di cui avete preso nota
precedentemente). Aprite quindi la cartella
e fate doppio clic sul file appena scaricato: si
aprirà un terminale provvisorio dove si vedrà
scorrere una sterminata lista di file mentre
vengono estratti, in una cartella del nome simile
a questo (il nome esatto dipende dalla versione
dell’NDK): android-ndk-r10e.
Per comodità (vi tornerà utile in un secondo
momento) rinominate la cartella togliendo il
numero di versione, quindi come android-ndk.
Il percorso completo dell’ NDK sarà quindi
del tipo C:\Users\nomeutente\AppData\Local\
Android\android-ndk, dove “nomeutente” è il
nome dell’utente sotto cui avete installato il
software.
Prendete nota anche di questo percorso, perché
vi servirà per la fase finale di configurazione.

Fig. 5 – Installazione in corso da SDK Manager.

Elettronica In ~ Ottobre 2016 121

Tu
tor

ial
 Qt

: i
st

ru
zio

ni
 p

er
 l’

us
oTutorial Qt : istruzioni per l’uso

Installazione di ANT
Ant è un tool di compilazione simile al Make
di Linux, ma scritto in Java. È necessario per
la generazione degli eseguibili per Android,
quindi va installato. Allo scopo basta scaricare
il file in formato zip (il primo della lista)
reperibile su http://ant.apache.org/bindownload.
cgi e decomprimerlo in una cartella a scelta;
per comodità vi consigliamo anche qui la
cartella dove avete messo l’ SDK e l’ NDK di
Android. Anche in questo caso prendete nota
del percorso, perché vi servirà in seguito.

Installiamo QT
Finalmente potete installare QT: aprite la
pagina www.qt.io, quindi fate clic sul pulsante

“Get Started” al centro dello schermo; apparirà
una schermata (Fig. 6) in cui viene chiesta la
tipologia di installazione, ossia commerciale
(Commercial Deployment), sviluppo interno/
uso personale/studenti (In-house deployment,
private use or student use) oppure open source
sotto licenze LGPL o GPL (Open Source
under a LGPL or GPL license). Nel nostro caso,
volendo sviluppare programmi open source,
sceglieremo la terza opzione. Le QT sono
infatti gratuite per sviluppare programmi open
source.
Apparirà quindi una finestra di dialogo
in cui viene chiesto se siamo certi di voler
sviluppare applicazioni open: confermiamo
con l’opzione Yes, allorché apparirà quindi
una terza schermata in cui vi si chiederà se
sarete in grado di rispettare gli obbligi relativi
alle licenze LGPL o GPL, che sono piuttosto
restrittivi, imponendo la pubblicità di tutto il
sorgente delle applicazioni che svilupperete
con le QT. Anche qui, scegliete Yes.
Finalmente apparirà il pulsante di Download,
insieme ad altre opzioni che però non
ci interessano, in quanto utilizzeremo
l’installatore on-line, che scaricherà ed
installerà tutti gli elementi necessari (Fig. 7).
Facendo clic sul pulsante Download Now
verrà avviato il download dell’installer in
questione, che dovrete salvare da qualche
parte, ad esempio sul desktop (Fig. 8).
Salvate il file ed eseguitelo tramite il consueto
doppio clic sull’icona corrispondente, allorché
vi verrà richiesta la solita conferma da
parte di Windows (Fig. 9). Fate clic su Run

Fig. 6 – Scelta della licenza di QT

Fig. 7 – Download dell’installer di QT.

Fig. 8 – Salvataggio dell’installer nel computer.

Fig. 9 – Finestra di dialogo per l’avvio
dell’esecuzione dell’installer di QT.

Tu
tor

ial
 Qt

: i
st

ru
zio

ni
 p

er
 l’

us
oTutorial Qt : istruzioni per l’uso

122 Ottobre 2016 ~ Elettronica In

e vi apparirà la schermata di benvenuto
dell’installazione, in cui si comunica che è
necessaria una registrazione al sito, che potrà

essere anche fatta al volo nel passo successivo.
In questa fate clic sul pulsante Next e vi
apparirà la richiesta di login, da usare se
siete già registrati al sito, oppure i dati per
la registrazione (Fig. 10). Sceglieremo qui
la seconda opzione, inserendo un’indirizzo
e-mail e una password a scelta, senza
dimenticarci di accettare i le condizioni tramite
l’apposita casella.
Il passaggio di registrazione si potrebbe
saltare, ma spesso nell’utilizzo viene comodo
avere accesso al sito per aggiornamenti, help,
eccetera, quindi conviene farlo. Facendo clic
su Next (che apparirà al posto dello Skip
una volta compilato il form) si passerà alla
schermata successiva e contestualmente
vi arriverà una e-mail per la conferma
della registrazione. Qui, facendo clic su
Next inizierà (finalmente!) la parte finale
dell’installazione e vi verrà chiesto dove volete
installare le QT; suggeriamo di mantenere la
scelta proposta, come mostrato nella Fig. 11.
Nella finestra di dialogo, facendo clic sul
pulsante Next apparirà l’importante schermata
di selezione dei componenti da installare
(Fig. 12); qui suggeriamo, per non appesantire
troppo l’installazione, di deselezionare la
versione 5.4, cliccando due volte consecutive
sul quadratino corrispondente (la prima volta
diventa un simbolo di spunta, selezionando
tutti i sottocomponenti, mentre al secondo clic
li deseleziona tutti).
È inoltre indispensabile aprire la sezione 5.5
(cliccando sul triangolino a sinistra della voce)
e selezionare i componenti per Android, oltre
a quelli desktop, visto che vorremo sviluppare
applicazioni anche per i cellulari; è sufficiente
per la stragrande maggioranza dei casi
selezionare la versione Android per Armv7
(Fig. 13).
Senza quest’ultima opzione non sarete in
grado di sviluppare applicazioni Android, a
meno di non aprire l’utilità di gestione delle
QT successivamente, quindi suggeriamo
caldamente di attivarla subito. La versione
armv7 è quella usata nella gran parte dei casi
perché è su tale architettura che si basa la
stragrande maggioranza dei dispositivi mobile
funzionanti con Android.
Lasciate pure le altre opzioni come sono state
preimpostate e fate nuovamente clic su Next;

Fig. 10 – Finestra per login o registrazione
del vostro account.

Fig. 11 – Scelta della directory di installazione di QT.

Fig. 12 – Scelta dei componenti da installare.

Elettronica In ~ Ottobre 2016 123

Tu
tor

ial
 Qt

: i
st

ru
zio

ni
 p

er
 l’

us
oTutorial Qt : istruzioni per l’uso

apparirà un’ulteriore richiesta di accettazione
delle condizioni, che qui omettiamo per brevità.
È sufficiente selezionare la casella di accettazione
e fare nuovamente clic su Next.
Vi verrà ora chiesto il nome del menu in cui
si troveranno le applicazioni Qt; anche qui
ometteremo la schermata, è sufficiente premere
Next accettando il valore proposto (Qt).
Finalmente, nell’ultima schermata apparirà
la richiesta di conferma per l’avvio
dell’installazione.
È sufficiente fare clic su Install per proseguire.
Ora inizierà lo scaricamento dei pacchetti
selezionati, che potrà richiedere anche
parecchio tempo a seconda delle prestazioni
del vostro computer e della velocità della
rete (Fig. 14). Ad installazione completata
apparirà la finestra di dialogo conclusiva nella
quale, lasciando selezionata la casella Launch
Qt Creator, verrà eseguita l’applicazione
principale di Qt nella quale potremo iniziare a
scrivere i nostri programmi (Fig. 15).
In questa finestra, facendo clic su Finish verrà
quindi lanciato Qt Creator, la cui finestra di
lavoro è illustrata nella Fig. 16.
L’applicazione Qt Creator dispone di un
tutorial, che per brevità non descriveremo in
questa sede; potete provarlo da voi facendo
clic sul pulsante Get Started Now.
Noi ci limiteremo, nelle prossime puntate di
questo corso, a creare il nostro primo progetto
d’esempio, chiamato Colibrì.

Fig. 13 – Selezione della versione Android per Armv7.

Fig. 14 – Installazione di Qt in corso.

Fig. 15 – Conclusione delll’installazione di Qt.

Impostazioni di Qt Creator
L’ultima fase dell’installazione consiste nel
fornire a Qt Creator i percorsi dei due toolkit
per Android precedentemente installati, del
toolkit di sviluppo Java (JDK) e di Ant.
Aprite quindi il menu Tools di Qt Creator
e in esso impartite il comando Options: vi
apparirà la schermata illustrata nella Fig. 17,
dove occorre selezionare -nella lista proposta
a sinistra- la voce Android, in modo da
visualizzare le relative impostazioni nella parte
di destra.
Le prime tre righe in alto sono i percorsi che
dovremo introdurre; il primo (JDK location)

Fig. 16 – Finestra di avvio di Qt Creator.

Tu
tor

ial
 Qt

: i
st

ru
zio

ni
 p

er
 l’

us
oTutorial Qt : istruzioni per l’uso

124 Ottobre 2016 ~ Elettronica In

dovremo ricercarlo tra le
cartelle del PC, nel caso
sia già installato; in caso
contrario è sufficiente
premere l’icona con la
freccia in giù, a destra del
corrispondente tasto Browse,
per aprire Internet Explorer
sulla pagina di scaricamento
del JDK.
Per brevità tralasciamo
le eventuali istruzioni di
installazione, che sono
comunque disponibili nel
sito di riferimento; occorre
ricordarsi solo di installare
il pacchetto corretto (JDK)
nella versione più recente
e per il sistema operativo
utilizzato (Windows a 32 o
64 bit nel nostro caso). Anche
qui, si tratta di scaricare un
installer ed eseguirlo. A fine
installazione, nella nostra
macchina il percorso è
risultato C:\Program Files\
Java\jdk1.8.0_74. Nella
versione Italiana di Windows
si troverà probabilmente in
C:\Programmi\Java\jdkxx.
yy.zz_tt, ove xx, yy, zz e tt
sono il numero della versione
di Java installato. Fate quindi
clic sul pulsante Browse
accanto alla prima casella e
ricercare il percorso che, una
volta dato l’OK, apparirà
nella casella JDK location;
in alternativa è possibile digitarlo per esteso
nella medesima casella. Gli altri tre percorsi
risultano più semplici, visto che ne abbiamo
preso nota precedentemente; è sufficiente
quindi scriverli nelle relative caselle. Ad
impostazione completata, la schermata sarà
simile a quella mostrata in Fig. 18.
Con questo passaggio abbiamo finalmente
terminato la laboriosa installazione del sistema
di sviluppo.
Tutti i progetti realizzati tramite Qt Creator
si troveranno nella cartella Documenti; è
comunque possibile modificarla nella sezione

‘Build and Run’ del menu impostazioni di Qt
Creator.
Per tenere tutto in ordine suggeriamo di creare una
sottocartella chiamata Qt dentro ai Documenti e
modificare le impostazioni in modo che i progetti
vengano salvati dentro questa.
Abbiamo dunque concluso la parte iniziale
di questo corso; vi diamo appuntamento alla
prossima puntata, nella quale entreremo nel vivo
dello sviluppo descrivendo la realizzazione della
nostra prima applicazione d’esempio, per poi
passare, nelle puntate successive, alla creazione
dell’applicazione obiettivo del corso. g

Fig. 17 – Configurazione Android.

Fig. 18 – Impostazione Android in Qt completata.

Elettronica In ~ Novembre 2016 119

Tu
tor

ial
 Qt

: i
st

ru
zio

ni
 p

er
 l’

us
o

bbiamo imparato, nella puntata precedente
di questo corso, che cosa sono e a cosa

servono le librerie Qt e con esse ci siamo proposti
di realizzare un controllo da smartphone
attraverso la connessione WiFi di un modulo
driver per LED RGBW (a luce rossa, verde, blu e
bianca) sfruttando la connettività wireless di una
scheda Fishino. Per farlo abbiamo studiato i tool
software di contorno allo sviluppo, tra cui l’SDK
Android (indispensabile perché il nostro proposito
è realizzare un’app per smartphone basati sul
diffusissimo sistema operativo di Google) del
toolkit di sviluppo aggiuntivo (NDK) e di ANT,
che è un tool di compilazione simile al Make di
Linux, ma scritto in Java.
Arrivati a questo punto, possiamo iniziare a creare
l’applicazione: apriamo Qt Creator e nella finestra
principale facciamo clic sul pulsante New Project,

il che determinerà l’apertura della schermata
visibile in Fig . 1.
Come si può vedere esistono varie tipologie
di progetti; noi sceglieremo Application
(Applicazione) sulla sinistra e Qt Widgets
Application (applicazione grafica Qt) in centro;
sulla destra vediamo una breve descrizione del
tipo di applicazione e le piattaforme supportate
(Desktop Android).
Qui si nota già un grosso vantaggio delle Qt :
è possibile creare un’applicazione in modalità
Desktop, collaudarla e debuggarla come
tale, senza i tempi lunghi di caricamento nel
device Android e/o nell’emulatore e, una
volta funzionante, basta cambiare modalità per
generare l’App definitiva.
Facciamo clic sul pulsante Choose e ci
apparirà una schermata (Fig. 2) per definire

 di MASSIMO DEL FEDELE

Creiamo la struttura
della nostra prima

applicazione con Qt
attraverso

l’utilizzo dei tool
scaricati. Seconda

puntata.

A

Tu
tor

ial
 Qt

: i
st

ru
zio

ni
 p

er
 l’

us
oTutorial Qt : istruzioni per l’uso

120 Novembre 2016 ~ Elettronica In

il nome dell’applicazione. Scriviamo
Colibri nell’apposita casella e accettiamo la
destinazione predefinita (è comunque possibile
specificarne una diversa) quindi facciamo clic
su Next.
Adesso appare una nuova finestra di dialogo
(Kit Selection) che permette di scegliere tra i
kit installati, ovvero dei sistemi di sviluppo da
utilizzare per la nostra applicazione (Fig. 3).
In pratica, ogni progetto può utilizzare
diversi kit che corrispondono alle diverse
piattaforme supportate; nel nostro caso, avendo
installato le piattaforme per applicazioni
Desktop ed Android ci troveremo quelle voci.
Selezioniamole entrambe, visto che vogliamo
sviluppare e collaudare la nostra App sul
computer e successivamente caricarla nel
nostro terminale Android.
Scelto il kit facciamo clic su Next e ci apparirà
la finestra di dialogo mostrata in Fig. 4, nella

quale potremo scegliere il nome per le classi
C++ che Qt Creator genererà automaticamente
per noi, e la classe su cui si baserà la nostra
App. Cambiamo solo il nome della classe in
Colibri, come si vede nella schermata in Fig.
4; il resto va lasciato inalterato. Il checkbox
Generate form indicherà a Qt Creator di creare
la finestra principale dell’applicazione. Facendo
clic su Next apparirà una finestra di riepilogo
che non dovete modificare; cliccando su Finish
verrà quindi generato lo scheletro della nostra
App (Fig. 5).
Sulla sinistra potete notare l’elenco dei file del
progetto, divisi per categorie:
-	 Colibri.pro è il progetto; al momento non è

necessario aprire il relativo file;
-	 Headers contiene tutti i files di include (.h);
-	 Sources contiene tutti i files sorgente (.cpp),

dei quali al momento ci interessa colibri.cpp;
-	 Forms contiene le schermate della nostra

Fig. 1 – Finestra per la creazione di un nuovo progetto.

Fig. 2 – Definiamo nome e percorso in cui salvare l’appicazione.

Elettronica In ~Novembre 2016 121

Tu
tor

ial
 Qt

: i
st

ru
zio

ni
 p

er
 l’

us
oTutorial Qt : istruzioni per l’uso

applicazione; aprendolo
e facendo doppio clic su
colibri.ui, si apre il Form
Editor, che permette di
modificare graficamente
l’aspetto della nostra app,
inserendo i vari Widget
(controlli) nella medesima
(Fig. 6).

Sul lato sinistro ci sono i
Widget (controlli) disponibili,
al centro c’è la finestra
dell’applicazione (sfondo
grigio con i puntini della
griglia), mentre a destra le
proprietà dei Widget stessi.
Siccome vogliamo creare
un’app che si adatti allo schermo del nostro
device, iniziamo ad inserire un elemento di

Fig. 4 – Assegnazione del nome alle classi.

Fig. 3 – Selezione dei sistemi di sviluppo con cui creare l’applicazione.

layout (FormLayout) che è il più semplice da
utilizzare; una volta che ci saremo impratichiti

Fig. 5 - Struttura base dell’applicazione.

Tu
tor

ial
 Qt

: i
st

ru
zio

ni
 p

er
 l’

us
oTutorial Qt : istruzioni per l’uso

122 Novembre 2016 ~ Elettronica In

con il sistema potremo utilizzare altre tipologie
che permettono posizionamenti più flessibili.
Il Form Layout consente di creare un semplice
dialogo costituito da varie righe, ognuna
delle quali contiene un’etichetta (Label) ed un
elemento grafico.
Trasciniamo quindi con il mouse il
Form Layout dentro la nostra finestra
dell’applicazione, ridimensioniamolo in modo
da occupare quasi tutta la finestra e trasciniamo
dentro di esso questi elementi in sequenza:
Label - Horizontal Slider - Label - Horizontal
Slider - Label - Horizontal Slider - Label -
Horizontal Slider - Label - Combo Box, avendo
l’accortezza di piazzarli all’interno del Form
Layout come mostra la Fig. 7.
Fatto questo, è opportuno dare dei nomi
significativi ai vari elementi ed inserire nei
testi nelle Label; selezionandoli uno ad uno
nel riquadro in basso a destra appariranno le
proprietà degli oggetti che sono liberamente
modificabili. Per le Label, la proprietà da
cambiare è la Text, mentre per il nome
dell’ogggetto si può lasciare quello predefinito.

Per i vari controlli (Sliders e Combo Box)
occorre invece cambiare i nomi degli oggetti;
noi scegliamo redSlider, greenSlider,
blueSlider, whiteSlider e deviceCombo
rispettivamente (Fig. 8). Adesso, facendo clic
con il tasto destro del mouse sullo sfondo
grigio del form bisogna selezionare Lay out e
Lay out in a form layout in modo da adattare le
dimensioni alla schermata.
Fatto questo, avete completato la costruzione
dell’interfaccia grafica; occorre ora scrivere il
codice per farla funzionare.

Meccanismo signal-slot
Le Qt utilizzano un interessante meccanismo,
non standard nel C++ (che richiede un
preprocessing del codice, un po’ come quanto
succede nell’IDE di Arduino), cosa fatta
automaticamente da Qt Creator tramite l’uso
dell’applicazione qmake: il sistema signal-slot.
In pratica, ogni widget (elemento grafico)
è in grado di generare diversi tipi di eventi
(signals) a seconda delle interazioni dell’utente;
questi segnali possono essere connessi a pezzi

Fig. 6 - Finestra di dialogo Form Editor.

Elettronica In ~Novembre 2016 123

Tu
tor

ial
 Qt

: i
st

ru
zio

ni
 p

er
 l’

us
oTutorial Qt : istruzioni per l’uso

Fig. 7 - Elementi nel Form Layout.

Fig. 8 – Nomi dei controlli dell’app.

Tu
tor

ial
 Qt

: i
st

ru
zio

ni
 p

er
 l’

us
oTutorial Qt : istruzioni per l’uso

124 Novembre 2016 ~ Elettronica In

di codice C++, chiamati slot. È un po’ come
connettere un azione al codice che la deve
gestire. Il meccanismo signal-slot è gestibile
sia manualmente, creando gli slot nel codice
e collegandoli con una funzione connect,
sia tramite l’interfaccia grafica, il che è più
semplice ma produce come effetto collaterale
un codice più lungo, creando uno slot per
ogni segnale connesso. Sceglieremo qui, per
semplicità, questa strada.
Nel layout editor clicchiamo col tasto destro
sul primo slider (il redSlider) e nel menu che
si apre selezioniamo Go to slot; si aprirà la
finestra di dialogo mostrata in Fig. 9.
Selezioniamo quindi la voce sliderMoved(int) e
facciamo clic su OK: si aprirà automaticamente
il file colibri.cpp con il cursore posizionato
dentro alla funzione che gestirà il nostro
segnale (Fig. 10). Aprendo il file Colibri.h si
potrà notare che è stata correttamente aggiunta
la dichiarazione della nostra funzione (Fig. 11).
Notate che Qt Creator fornisce un metodo
veloce per creare lo scheletro del codice.

Fig. 10 - Funzione di gestione del segnale.

Fig. 9 - Finestra Go to slot.

Fig. 11 - Dichiarazione della funzione.

Fig. 12 - File Colibri.cpp dopo la creazione degli slot.

g

Fig. 13 - Gli slider dell’app ancora inattivi.

Proseguiamo creando altre connessioni, come
fatto per il primo segnale; dovremo gestire
tutti i segnali di tipo sliderMoved() di tutti
gli slider dell’interfaccia grafica e il segnale
currentIndexChanged(int) per il combo box.
Una volta completata la creazione degli slot,
ci troveremo nel file Colibri.cpp la situazione
mostrata in Fig. 12.
Abbiamo qui completato la parte
“semiautomatica” della nostra applicazione;
resta ora da scrivere il codice per implementare
le funzioni. Volendo è già possibile
testare il funzionamento dello scheletro
dell’applicazione; allo scopo è sufficiente
cliccare sull’icona in basso a sinistra con il
triangolino verde e, dopo qualche istante,
apparirà la finestra della nostra App.
Ovviamente, non avendo ancora scritto
nemmeno una riga di codice, lo spostamento
degli slider non sortirà alcun effetto (Fig. 13).
Quindi dobbiamo scrivere il codice che animerà
l’app, ma di questo ci occuperemo nella terza
ed ultima puntata di questo corso.

Elettronica In ~ Dicembre 2016 / Gennaio 2017 133

Tu
tor

ial
 Qt

: i
st

ru
zio

ni
 p

er
 l’

us
o

3
bbiamo conosciuto le librerie Qt e i tool di
sviluppo che ci servono per realizzare la

nostra app e con essi abbiamo costruito quello
che abbiamo definito lo “scheletro” della nostra
applicazione per il controllo da smartphone
Android (o da PC con installato Windows), tramite
link WiFi e la scheda Fishino di un modulo RGBW
Colibrì. Nella seconda puntata di questo tutorial
abbiamo anche spiegato come creare l’interfaccia
grafica, che abbiamo costruito insieme e che
per il momento è inattiva e naturalmente potrà
funzionare solo dopo che avremo scritto il codice
per “animarla”; abbiamo anche introdotto il
sistema signal-slot, dove ogni widget (elemento
grafico) è in grado di generare diversi tipi di eventi
(signals) a seconda delle interazioni dell’utente
(tali segnali possono essere connessi a pezzi di
codice C++, chiamati slot, come un’azione viene

correlata al codice che la deve gestire).
In questa puntata conclusiva del nostro corso
completiamo il nostro lavoro, mettendo mano
al codice e scrivendo le parti mancanti nei file
Colibri.h e Colibri.cpp accennati nella puntata
precedente; ma prima di farlo aggiungiamo il
modulo network al file del progetto, visto che
avremo bisogno dei componenti per accedere ai
socket UDP; il Listato 1 mostra il contenuto del
file Colibri.pro al quale abbiamo aggiunto la sola
parola network dopo QT +=.
Guardate adesso il Listato 2, contenente il file
Colibri.h al quale abbiamo aggiunto innanzitutto
le costanti in UDP_PACKET_CODES contenenti i
codici dei comandi da inviare alla scheda Fishino
nei pacchetti UDP; notate che abbiamo previsto tre
codici (escluso il UDP_EMPTY che è un comando
nullo): il primo serve per impostare i valori di

 di MASSIMO DEL FEDELE

Scriviamo finalmente
il firmware della

nostra applicazione
 e lo sketch per Fishino.

Ultima puntata.

A

Tu
tor

ial
 Qt

: i
st

ru
zio

ni
 p

er
 l’

us
oTutorial Qt : istruzioni per l’uso

134 Dicembre 2016 / Gennaio 2017 ~ Elettronica In

luminosità del LED RGBW, il secondo per
leggerli ed il terzo è il comando di discovery che
permette di localizzare tutte le board Fishino
presenti in rete che eseguono lo sketch Colibrì.
Successivamente abbiamo inserito il numero
di porta UDP utilizzata per le comunicazioni
(è 47777) ed alcune funzioni a basso livello
impiegate per inviare e ricevere pacchetti UDP,
oltre ad alcune ad alto livello per impostare
o leggere i valori di luminosità e per rilevare,
ancora una volta, le schede Fishino collegate in
rete wireless.
Veniamo adesso al codice sorgente vero e
proprio, che è quello visibile nel Listato 3:
stiamo parlando del file Colibri.cpp.
Qui possiamo vedere l’implementazione delle
varie parti dell’App; in particolare, notiamo
che nelle funzioni degli slot, che in precedenza
erano vuote, abbiamo inserito le chiamate a
setDeviceValues per gli slider dell’interfaccia
grafica e getDeviceValues per il combo box,
in modo da poter modificare le luci scorrendo
gli slider e leggere i valori impostati quando si
seleziona una nuova luce tramite il combo box.
Le funzioni ad alto livello creano un pacchetto
UDP costituito da una serie di byte, dei quali
il primo è il codice di comando, il secondo è
il numero di device (va definito perché ogni
scheda Fishino connessa in rete è in grado di
comandare più lampade, ovvero più controller
Colibrì) mentre i rimanenti dipendono dal
comando stesso e possono essere vuoti. Ad

esempio, le linee di codice:

 // build the needed query UDP packet
 QByteArray packet;
 packet.append(UDP_GETLIGHT).append(device);

 // send the packet
 sendUdpPacket(packet, addr);

creano un array di byte dinamico
(QByteArray) e vi inseriscono (append) il
comando per leggere i valori di luminosità
(UDP_GETLIGHT) nel device (device)
richiesto. Il pacchetto viene quindi spedito
(sendUdpPacket) alla scheda Fishino
caratterizzata dall’indirizzo IP richiesto (addr).
Sempre degno di nota è il codice nel costruttore
Colibri::Colibri() che inizializza un socket Udp
e si mette in ascolto di pacchetti sulla porta
specificata, realizzando quindi un semplice ma
efficace server UDP:

 // initialize UDP socket
 udpSocket = new QUdpSocket(this);
 udpSocket->bind(UDP_PORT, QUdpSocket::ShareAddress);

Ultima, ma non in ordine di importanza, è la
funzione discoverDevices() che si occupa di
rilevare tutte le schede Fishino connesse al
sistema. Questa sfrutta una particolarità del
protocollo UDP, vale a dire la possibilità di
inviare un pacchetto di Broadcast, ovvero non
diretto ad un particolare IP ma a tutti gli IP
della rete locale.
La funzione in questione invia un pacchetto di
discovery in broadcast e si mette in attesa delle
risposte da parte delle schede Fishino, ciascuna
delle quali deve comunicare, in breve tempo,

Listato 1
#--
Project created by QtCreator 2016-03-09T09:24:39
#--

QT += network core gui

greaterThan(QT_MAJOR_VERSION, 4): QT += widgets

TARGET = Colibri
TEMPLATE = app

SOURCES += main.cpp\
 colibri.cpp

HEADERS += colibri.h

FORMS += colibri.ui

CONFIG += mobility
MOBILITY =

Fig. 1
Richiesta di
autorizzazione.

Elettronica In ~ Dicembre 2016 / Gennaio 2017 135

Tu
tor

ial
 Qt

: i
st

ru
zio

ni
 p

er
 l’

us
oTutorial Qt : istruzioni per l’uso

la propria presenza nella rete ed il numero di
lampade RGBW (ovvero di controller Colibrì)
ad essa connesse.
Fatto questo, le informazioni ricevute vengono
utilizzate per riempire il combo box, in modo
da poter selezionare la lampada RGBW (il
controller Colibrì) su cui intervenire con l’App.
Per ragioni di spazio non approfondiamo
ulteriormente il codice: le Qt contengono
un insieme estesissimo di funzionalità per
descrivere le quali non basterebbero 10 numeri
della rivista. Contengono comunque un’ottima
documentazione nella quale si potranno cercare
le classi utilizzate e tutti gli approfondimenti del
caso.
Il programma è stato volutamente mantenuto
semplice, evitando alcune funzionalità che
sarebbero indispensabili in un’applicazione
completa, quali l’interrogazione delle lampade
RGBW entro un certo intervallo di tempo (ciò,
allo scopo di controllare che i valori non siano
stati cambiati tramite un’altra applicazione
eseguita in parallelo), ed un sistema per
modificare i nomi delle lampade che adesso
appaiono nel formato IP:nn, ovvero vengono
visualizzate tramite il numero di IP e di device
all’interno della stessa scheda Fishino.
Bene, a questo punto possiamo affermare che la
nostra applicazione è terminata!
Ma ora viene spontanea una domanda:

“non volevamo fare un’App per il nostro
smartphone?” Ebbene....presto fatto! Il bello
delle Qt sta proprio qui: basta cambiare il
kit di compilazione (vedete come fare nella
prima puntata) ed il nostro programma per
PC desktop Windows viene istantaneamente

Listato 2
#ifndef COLIBRI_H
#define COLIBRI_H

#include <QMainWindow>

#include <QUdpSocket>

// udp packet codes
// codici nei pacchetti UDP
typedef enum
{
 UDP_EMPTY		 = 0,
 UDP_SETLIGHT	= 1,
 UDP_GETLIGHT	= 2,
 UDP_FIND		 = 0x55

} UDP_PACKETS_CODES;

#define UDP_PORT	 47777

namespace Ui {
class Colibri;
}

class Colibri : public QMainWindow
{
 Q_OBJECT

public:
 explicit Colibri(QWidget *parent = 0);
 ~Colibri();

private slots:
 void on_redSlider_sliderMoved(int position);

 void on_greenSlider_sliderMoved(int position);

 void on_blueSlider_sliderMoved(int position);

 void on_whiteSlider_sliderMoved(int position);

 void on_deviceCombo_currentIndexChanged(int index);

private:
 Ui::Colibri *ui;

 // the server socket
 QUdpSocket *udpSocket;

 // send an UDP packet to an host
 void sendUdpPacket(QByteArray const &packet, _
 QHostAddress addr);

 // wait for and get an UDP packet from host
 QByteArray receiveUdpPacket(quint16 timeout, _
 QHostAddress &sender, quint16 &port);
 QByteArray receiveUdpPacket(quint16 timeout);

 // discover all connected colibrì devices
 void discoverDevices(void);

 // get device values
 void getDeviceValues(void);

 // set device values
 void setDeviceValues(void);
};

#endif // COLIBRI_H
Fig. 2 - Esecuzione dello scheletro del programma.

Listato 3
#include “colibri.h”
#include “ui_colibri.h”

#include <QTime>

Colibri::Colibri(QWidget *parent) :
 QMainWindow(parent),
 ui(new Ui::Colibri)
{
 ui->setupUi(this);

 ui->redSlider->setMinimum(0);
 ui->redSlider->setMaximum(255);
 ui->greenSlider->setMinimum(0);
 ui->greenSlider->setMaximum(255);
 ui->blueSlider->setMinimum(0);
 ui->blueSlider->setMaximum(255);
 ui->whiteSlider->setMinimum(0);
 ui->whiteSlider->setMaximum(255);

 // initialize UDP socket
 udpSocket = new QUdpSocket(this);
 udpSocket->bind(UDP_PORT, QUdpSocket::ShareAddress);

 // discover available devices
 discoverDevices();
}

Colibri::~Colibri()
{
 delete ui;
}

void Colibri::on_redSlider_sliderMoved(int /* position */)
{
 setDeviceValues();
}

void Colibri::on_greenSlider_sliderMoved(int /* position */)
{
 setDeviceValues();
}

void Colibri::on_blueSlider_sliderMoved(int /* position */)
{
 setDeviceValues();
}

void Colibri::on_whiteSlider_sliderMoved(int /* position */)
{
 setDeviceValues();
}

void Colibri::on_deviceCombo_currentIndexChanged _
int /* index */)
{
 getDeviceValues();
}

// send an UDP packet to an host
void Colibri::sendUdpPacket(QByteArray const &packet, _
QHostAddress addr)
{
 QUdpSocket *sock = new QUdpSocket;
 sock->writeDatagram(packet, addr, UDP_PORT);
 delete(sock);
}

// wait for and get an UDP packet from host
QByteArray Colibri::receiveUdpPacket(quint16 timeout, _
QHostAddress &sender, quint16 &port)
{
 QByteArray res;
 res.clear();

Tu
tor

ial
 Qt

: i
st

ru
zio

ni
 p

er
 l’

us
oTutorial Qt : istruzioni per l’uso

136 Dicembre 2016 / Gennaio 2017 ~ Elettronica In

trasformato in un’app per Android!
Prima di tutto, però, è d’obbligo una premessa:
affinché tutto ciò sia possibile occorre attivare la

“modalità sviluppatore” nel nostro cellulare, poi
abilitare l’esecuzione di applicazioni non fidate,
altrimenti non potremo caricare la nostra app.
Poichè ogni modello di cellulare è differente,
consigliamo una ricerca in Internet per scoprire
qual è la procedura corretta per attivare la
modalità sviluppatore sul vostro modello di
smartphone.
Fatto questo, colleghiamo il telefono al

Fig. 3 - Dispositivi connessi.

Fig. 4 - Programma in esecuzione.

computer utilizzato per lo sviluppo, tramite
il cavo USB: dovrebbe apparire sullo schermo
una richiesta di autorizzazione simile a quella
proposta dalla Fig. 1. È indispensabile accettare
tale richiesta; consigliamo inoltre di selezionare
la casella “Consenti sempre da questo PC” per
evitare ulteriori richieste future.
Nel caso la schermata non appaia, scollegare
e ricollegare lo smartphone dopo qualche
secondo.

(Continua)

Listato 3 (segue)
 // wait for incoming answers
 QTime timer;
 timer.start();
 while(timer.elapsed() < timeout)
 {
 // if there are pending packets....
 if(udpSocket->hasPendingDatagrams())
 {
 // build res array

 // read it
 res.resize(udpSocket->pendingDatagramSize());
 udpSocket->readDatagram(res.data(), _
 res.size(), &sender, &port);

 return res;
 }
 }
 return res;
}

QByteArray Colibri::receiveUdpPacket(quint16 timeout)
{
 QHostAddress host;
 quint16 port;
 return receiveUdpPacket(timeout, host, port);
}

void Colibri::discoverDevices()
{
 // build UDP discovery packet
 QByteArray arr(1, UDP_FIND);
 sendUdpPacket(arr, QHostAddress::Broadcast);

 // clear droplist
 ui->deviceCombo->clear();

 // wait for incoming answers
 QByteArray res;
 do
 {
 // try to read the packet
 QHostAddress host;
 quint16 port;
 res = receiveUdpPacket(500, host, port);
 qDebug() << “Packet size:” << res.size() << “\n”;

 // if not done, leave
 if(!res.size())
 break;

 // if packet has a single byte, it’s our _
 // own query packet
 // just discard it
 if(res.size() <= 1)
 continue;

 QString deb;
 for(int k = 0; k < res.size(); k++)
 deb += QString(“0x%1”).arg((int)res[k], _
 0, 16) + “:”;
 qDebug() << deb;

 quint8 const *resPtr = (quint8 const *)res.data();
 if(*resPtr++ == UDP_FIND)
 {
 quint8 nDevices = *resPtr++;
 for(quint8 iDev = 0; iDev < nDevices; _
 iDev++)
 {
 // device number
 quint8 devNum = *resPtr++;

 // device name
QString name = (const char *)resPtr;
 resPtr += strlen((const char *)resPtr) + 1;
 QList<QVariant> list;

(Continua)

Elettronica In ~ Dicembre 2016 / Gennaio 2017 137

Tu
tor

ial
 Qt

: i
st

ru
zio

ni
 p

er
 l’

us
oTutorial Qt : istruzioni per l’uso

Nella schermata che appare (riferitevi alla Fig. 2)
premete sul simbolo del PC che appare in basso
a sinistra, sopra il triangolino verde che avete
usato in precedenza per eseguire lo scheletro
del programma; poi selezionate il Kit Android
e l’icona del PC si trasformerà nell’usuale icona
Android. A questo punto è sufficiente premere
il solito triangolino verde (RUN) per caricare
l’applicazione sullo smartphone; la prima volta
che verrà fatto ciò, nello schermo del computer
apparirà una finestra di dialogo contenente la
lista dei dispositivi Android connessi (Fig. 3).
Nel nostro caso abbiamo solo un device, quindi
la scelta è obbligata, ma se non fosse così
dovrete scorrere fino a selezionare il device
con cui state operando. Mettendo il segno di
spunta sulla casella “Always use this device....”
potremo evitare ulteriori richieste di scelta in
futuro. Il programma verrà dunque ricompilato
in formato Android, caricato sul dispositivo e
lanciato (Fig. 4).
Come potete notare, a fronte di un’installazione
piuttosto laboriosa le Qt offrono un vantaggio
enorme nello sviluppo delle applicazioni
portabili tra vari device; dati i limiti di spazio
a disposizione ne abbiamo ovviamente solo
saggiato le potenzialità, ma in rete è disponibile
una documentazione abbondante, ed in seguito
svlilupperemo altre applicazioni con questo
toolkit. Terminato lo sviluppo dell’app Android,
passiamo ora allo sketch che dovrà essere
caricato sulla scheda Fishino per far funzionare
il controllo ed alle connessioni da effettuare con
il driver Colibrì (Listato 4).

Lo sketch per Fishino
Il firmware da caricare è veramente corposo e
il relativo listato occuperebbe diverse pagine:
per uno spazio che in questo numero non
abbiamo e che esigenze grafiche non si potrebbe
trovare. Quindi per conciliare questa esigenza
inseriremo qui solo i punti salienti dello sketch,
che è comunque scaricabile per intero dal nostro
sito web www.elettronicain.it.
Ad inizio sketch, dopo i soliti include (#include
“Fishino.h”, #include “SPI.h”, #include “Flash.h”
e #include “EEPROM.h”) troviamo la seguente
porzione di codice:

// ogni colibrì richiede 4 uscite PWM
// questo array è utilizzato per connettere le
uscite con i 4 colori

Listato 3 (segue)

 list << devNum << host.toIPv4Address();
 ui->deviceCombo->addItem(name, list);
 }
 }

 }
 while(true);
}

// get device values
void Colibri::getDeviceValues(void)
{
 // get current device index
 int comboIdx = ui->deviceCombo->currentIndex();
 if(comboIdx == -1)
 return;

 // get device IP and number from combobox data
 QList<QVariant> list = _
 ui->deviceCombo->currentData().value<QList<QVariant> >();
 qint8 device = list[0].value<qint8>();
 QHostAddress addr(list[1].value<quint32>());

 // build the needed query UDP packet
 QByteArray packet;
 packet.append(UDP_GETLIGHT).append(device);

 // send the packet
 sendUdpPacket(packet, addr);

 // read response back
 packet = receiveUdpPacket(200);

 qDebug() << “Packet size:” << packet.size() << “\n”;

 // response packet must be 6 bytes long
 if(packet.size() == 6 && (quint8)packet[0] == UDP_GETLIGHT)
 {
 quint8 const *packP = (quint8 const *)packet.data() + 2;
 ui->redSlider->setValue(*packP++);
 ui->greenSlider->setValue(*packP++);
 ui->blueSlider->setValue(*packP++);
 ui->whiteSlider->setValue(*packP++);
 }

}

// set device values
void Colibri::setDeviceValues(void)
{
 qint8 r, g, b, w;

 // get current device index
 int comboIdx = ui->deviceCombo->currentIndex();
 if(comboIdx == -1)
 return;

 // get slider values
 r = ui->redSlider->value();
 g = ui->greenSlider->value();
 b = ui->blueSlider->value();
 w = ui->whiteSlider->value();

 // get device IP and number from combobox data
 QList<QVariant> list = _
 ui->deviceCombo->currentData().value<QList<QVariant> >();
 qint8 device = list[0].value<qint8>();
 QHostAddress addr(list[1].value<quint32>());

 // build the needed query UDP packet
 QByteArray packet;
 packet.append(UDP_SETLIGHT).append(device);
 packet.append(r).append(g).append(b).append(w);

 // send the packet
 sendUdpPacket(packet, addr);
}

Tu
tor

ial
 Qt

: i
st

ru
zio

ni
 p

er
 l’

us
oTutorial Qt : istruzioni per l’uso

138 Dicembre 2016 / Gennaio 2017 ~ Elettronica In

typedef uint8_t DEVICE_CONNECTIONS[4];

che definisce il tipo DEVICE_CONNECTIONS
come un array di 4 numeri interi, che
corrispondono agli altrettanti I/O digitali ai
quali si vuole connettere il modulo controller
RGBW Colibrì.
Successivamente troviamo le usuali variabili
riguardanti la connessione wireless (SSID,
PASSWORD, IP, eccetera) e dopo, la porzione
di codice mostrata nel Listato 4, nella quale
viene definita la porta UDP di comunicazione
ed è rappresentata la mappatura tra i controller
Colibrì connessi alla scheda Fishino e gli I/O cui
fisicamente si collegano; in questo caso, come
specificato nei commenti, abbiamo duplicato
lo stesso device per motivi didattici, mancando
sufficienti PWM per connettere due device.
Più avanti troviamo la variabile che realizza il
server UDP e le costanti che identificano i vari
pacchetti scambiati :

// il client/server UDP
FishinoUDP udp;

// codici nei pacchetti UDP
typedef enum
{
	 UDP_EMPTY	 = 0,
	 UDP_SETLIGHT	 = 1,
	 UDP_GETLIGHT	 = 2,
	 UDP_FIND	= 0x55

} UDP_PACKETS_CODES;

Seguono alcune routine (Listato 5) che
processano i singoli pacchetti, che omettiamo
per brevità, descrivendo qui solo la più
interessante, ovvero quella che risponde ad
una richiesta di broadcast trasmettendo i dati
del device connesso al server, permettendone
l’identificazione automatica.
Descriviamo infine il “cuore” dell’applicazione,
ovvero la funzione che si occupa di identificare
i pacchetti ricevuti e ad inviarli alle rispettive
funzioni di gestione; la vedete nel Listato 6.
Nel Setup(), a parte le consuete inizializzazioni
avviamo il server UDP:

	// inizia l’ascolto dei pacchetti UDP alla porta specificata
	Serial << F(“Starting connection to server...\n”);
	udp.begin(UDP_PORT);

Invece nel loop controlliamo l’eventuale
arrivo di pacchetti UDP e, nel caso, li leggiamo

Listato 4
// inserire qui la porta UDP in attesa dei pacchetti
#define UDP_PORT		 47777

// inserire qui il nome dell’applicazione che sarà inviato al client dopo la richiesta di discovery
#define APP_NAME		 “fishnlights”

// connessioni tra gli output ed i colibrì
// ogni colibrì richiede 4 uscite PWM (R, G, B, W)
// siccome Fishino ha solo 6 PWM disponibili, li abbiamo semplicemente
// duplicati per mostrare nell’App 2 luci connesse
DEVICE_CONNECTIONS DEVICES[] =
{
	 {3, 5, 6, 9},
	 {3, 5, 6, 9},
};

Listato 5
// processa i pacchetti con codice FIND
bool processFind(uint8_t const *_packet)
{
	 Serial << F(“GOT FIND PACKET\n”);
	 char buf[DEVICE_NAME_MAX + 1];
	
	 uint16_t packetLen = 2;
	
	 // calcola la dimensione del pacchetto di risposta
	 for(uint8_t i = 0; i < numDevices; i++)
	 {
		 Serial << F(“Reading name of #”) << (int)i << F(“ device\n”);
		 if(!getDeviceName(i, buf, DEVICE_NAME_MAX))
			 return false;
		 Serial << F(“GOT :”) << buf << “\n”;
		 packetLen += strlen(buf) + 2;
	 }
	 Serial << F(“PACKET SIZE : “) << packetLen << “\n”;
	 uint8_t *packet = (uint8_t *)malloc(packetLen);
	 uint8_t *packP = packet;
	 *packP++ = UDP_FIND;
	 *packP++ = numDevices;
	 for(uint8_t i = 0; i < numDevices; i++)
	 {
		 // first the device number
		 *packP++ = i;
		
		 // then the device name
		 getDeviceName(i, buf, DEVICE_NAME_MAX);
		 strcpy((char *)packP, buf);
		 packP += strlen(buf) + 1;
	 }
	
	 // reinvia il pacchetto al mittente
	 Serial << F(“Sending packet to “) << udp.remoteIP() << “ at port “ << UDP_PORT << “\n”;
	 udp.beginPacket(udp.remoteIP(), UDP_PORT);
	 udp.write(packet, packetLen);
	 return udp.endPacket();
}

Elettronica In ~ Dicembre 2016 / Gennaio 2017 139

Tu
tor

ial
 Qt

: i
st

ru
zio

ni
 p

er
 l’

us
oTutorial Qt : istruzioni per l’uso

e li inviamo alla processPacket() vista in
precedenza; la rispettiva porzione di codice è
visibile nel Listato 7.
La personalizzazione dello sketch è
semplicissima: nella parte iniziale di
configurazione, a parte i soliti dati della rete
WiFi, occorre inserire questa struttura:

DEVICE_CONNECTIONS DEVICES[] =

{
	 {3, 5, 6, 9},
	 {3, 5, 6, 9},
};

che contiene la mappatura dei canali RGBW
con i corrispondenti pin di Fishino, che devono
essere dotati di uscita PWM.
Nell’esempio abbiamo semplicemente duplicato
una lampada sugli stessi pins, in mancanza

Listato 6
// processa i pacchetti UDP
bool processPacket(uint8_t const *packet)
{
	 Serial << F(“GOT PACKET\n”);
	 uint8_t type = packet[0];
	 packet++;
	 switch(type)
	 {
		 case UDP_SETLIGHT:
			 return processSetLight(packet);

		 case UDP_GETLIGHT:
			 return processGetLight(packet);

		 case UDP_FIND:
			 return processFind(packet);
			
		 default:
			 Serial << F(“UNKNOWN PACKET “) << (int)type << “\n”;
			 return false;
	 }
}

Listato 7
// ciclo infinito
void loop(void)
{
	 // check incoming packets
	 int packetSize = udp.parsePacket();
	 if (packetSize)
	 {
		 uint8_t *buf = (uint8_t *)malloc(packetSize);
		 if(udp.read(buf, packetSize))
			 processPacket(buf);
		 else
			 Serial << F(“Error reading packet, size is “) << packetSize << F(“ bytes\n”);
		 free(buf);
	 }
}

Tu
tor

ial
 Qt

: i
st

ru
zio

ni
 p

er
 l’

us
oTutorial Qt : istruzioni per l’uso

140 Dicembre 2016 / Gennaio 2017 ~ Elettronica In

degli 8 necessari per due lampade; in un
futuro articolo proporremo una versione
estesa dello sketch pensata per consentire,
tramite l’uso della scheda di ampliamento
OCTOPUS (la quale dispone di ben 16 uscite
PWM), di controllare quattro Led RGBW per
ciascuna scheda Fishino, o fino a 32 LED RGBW
sovrapponendo un massimo di otto interfacce.
Il funzionamento dello sketch è piuttosto
semplice: nel setup, dopo la connessione alla
rete WiFi (o la creazione di un Access Point, se
si preferisce) e dopo aver definito tutte le uscite
PWM della scheda Fishino ed averle azzerate,
viene messo in ascolto un client UDP sulla porta
47777:

	 udp.begin(UDP_PORT);

Nel loop si esegue ciclicamente un controllo
su eventuali pacchetti ricevuti e, nel caso,

viene chiamata la funzione processPacket()
che esamina i dati nel pacchetto e li smista
alla funzione di gestione corrispondente al
primo byte in esso contenuto: processSetLight,
processGetLight e processFind, rispettivamente,
per impostare o leggere il valore dei PWM o per
segnalare la presenza della scheda nella rete.
Si può notare che sono previste l’impostazione
e la lettura di un “nome luce” da EEPROM;
questa è una funzionalità in via di sviluppo, sia
dal lato app che dal lato Fishino, che permetterà
di dare un nome alle varie utenze, le quali
attualmente vengono visualizzate solo tramite
numero di indirizzo IP.
Bene, con questo abbiamo terminato la lunga,
ma speriamo utile, esposizione di questo
progetto, che, siamo certi, sarà stata l’occasione
per conoscere le librerie QT e il mondo di tool di
sviluppo che ne permette l’utilizzo ottimale. g

