
 Arduino

Elettronica In ~ Ottobre 2015 33

el numero scorso abbia-
mo presentato la scheda

Fishino UNO, una board compa-
tibile con la diffusissima Arduino
UNO dotata però di connettività
WiFi, slot per microSD ed RTC
incorporati.
In questo secondo articolo inizia-
mo la descrizione delle librerie
software disponibili, mostrando
le principali funzioni con alcuni
semplici esempi d’uso.
Come anticipato, sia il firmwa-
re della scheda che le librerie
software sono in continua fase di
sviluppo, quindi consigliamo di
eseguire spesso l’aggiornamento
di entrambi.

LE LIBRERIE
Per poter sfruttare tutte le carat-
teristiche di Fishino occorre ov-
viamente disporre di una serie di
librerie software che ne gestisca-
no tutti i componenti aggiuntivi.
Se per la scheda SD card e il Real
Time Clock (RTC) esistono già
nella suite di Arduino le corri-
spondenti librerie, questo non
vale per il modulo WiFi ESP12,
per il quale ne abbiamo sviluppa-
te di apposite.
Inizieremo quindi da queste
ultime, fornendo comunque
successivamente anche qualche
dettaglio su quelle già disponibili
nell’IDE.

Le librerie fornite e liberamente
scaricabili dal sito sono:
•	 Libreria ‘Fishino’
•	 Libreria ‘FishinoWebServer’
•	 Libreria ‘Flash’

quest’ultima libreria, che abbia-
mo inserito per comodità nel
download pur essendo reperibile
in rete, è necessaria per il funzio-
namento delle due precedenti.

LIBRERIA ‘FISHINO’
Partiamo con la descrizione della
libreria (che potete scaricare dal
sito della rivista www.elettronicain.
it) che contiene tutta la gestione a
basso e medio livello del modulo

FISHINO,
L’ARDUINO DIVENTA

WIRELESS

N

Continuamo la presentazione della board Fishino,
mostrando le principali funzioni delle librerie
e degli esempi d’uso. Seconda puntata.

di MASSIMO DEL FEDELE

34 Ottobre 2015 ~ Elettronica In

Elettronica In ~ Ottobre 2015 35

WiFi di Fishino.
Questa definisce 3 classi:
•	 FishinoClass e la relativa variabile globale Fishi-

no
•	 FishinoClient
•	 FishinoServer

Il progetto è in continua evoluzione e ben supporta-
to da una comunità molto attiva anche su FaceBook
(https://www.facebook.com/groups/fishino); anche gra-
zie a questa in seguito verranno aggiunte la Fishi-
noUdp, FishinoAnalog, FishinoDigital e Fishino-
Serial per gestire rispettivamente le comunicazioni
internet tramite socket Udp, l’ingresso analogico,
gli I/O digitali e la porta seriale hardware aggiunti-
va presenti sul modulo WiFi.
Iniziamo la descrizione della classe FishinoClass
(istanza singola nella variabile globale Fishino), con
degli esempi pratici di utilizzo delle varie funzioni.
Con bool Fishino.reset() si inizializza il modulo
WiFi inviandogli un reset software. Obbligatorio
ad inizio sketch per garantire un avvio corretto del
modulo. Ritorna TRUE se il modulo è stato corretta-
mente inizializzato, FALSE altrimenti.
La funzione di reset esegue inoltre un controllo
sulla versione del firmware installata. In caso di
versione troppo datata viene inviato un messaggio
di errore alla porta seriale ed il programma viene
bloccato. Nel Listato 1 vediamo un esempio di cor-

retta inizializzazio-
ne nella Setup. A parte
la solita inizializzazione
della porta seriale (da fare ad
inizio setup), si notano:
•	 l’inizializzazione dell’interfaccia SPI
•	 il Fishino.reset() dell’inizializzazione del modulo

La prima è stata lasciata volutamente manuale per
poter cambiare la velocità di comunicazione, nel
caso siano presenti altri shields che utilizzano la
stessa interfaccia. In questo caso si è impostata la
massima velocità disponibile.
La sezione contenente la chiamata Fishino.reset()
inizializza il modulo e visualizza un messaggio di
corretta inizializzazione sulla seriale o, in caso di
problemi, visualizza l’errore e blocca lo sketch.
Attenzione, il modulo WiFi NON parte senza que-

Listato 1
void setup()
{
	 // apre la porta seriale e ne attende l’apertura
	 // consigliabile da eseguire come primo comando per poter visualizzare
	 // eventuali messaggi di errore sul monitor seriale
	 Serial.begin(115200);

	 // attende l’apertura della porta seriale.
	 // Necessario solo per le boards Leonardo
	 while (!Serial)
		 ;

	 // inizializza il modulo SPI
	 SPI.begin();
	 SPI.setClockDivider(SPI_CLOCK_DIV2);
	
	 // resetta e testa il modulo WiFi
	 if(Fishino.reset())
		 Serial.println(“Fishino WiFi RESET OK”);
	 else
	 {
		 Serial.println(“Fishino RESET FAILED”);
		
		 // attende per sempre
		 while(true)
			 ;
	 }

	 Serial.println(“Fishino WiFi web server”);

	<resto dello sketch>...

Listato 2
...<parte precedente dello sketch>...

Fishino.setMode(STATION_MODE);

...<resto dello sketch>...

Listato 3

...<parte precedente dello sketch>...
while(true)
{
		if(Fishino.begin(“MIO_SSID”,“MIA_PASSWORD”)) {
			Serial.println(“Connected to MIO_SSID”);
			break;
		}
		else {
			Serial.println(“Failed connecting to MIO_SSID”);
			Serial.println(“Retrying.....”);
		}
}
...<resto dello sketch>...

34 Ottobre 2015 ~ Elettronica In

Elettronica In ~ Ottobre 2015 35

sto comando.
Le funzioni bool Fishino.setMode(uint8_t mode)
e uint8_t Fishino.getMode(void) impostano (o
leggono) la modalità di funzionamento del modulo
(Listato 2), che può essere una delle seguenti:
•	 STATION_MODE

modalità stazione. Richiede la presenza di un
router WiFi a cui connettersi. È la modalità nor-
male.

•	 SOFTAP_MODE
Permette la creazione di un access point a cui
connettersi. Utile in mancanza di un’infrastruttu-
ra di rete esistente.

•	 STATIONAP_MODE
Modalità doppia, il modulo funziona sia da
stazione, collegandosi ad un router esistente, che
da access point.

Per eseguire la connessione all’access point/router
si utilizza bool Fishino.begin(SSID, PASSWORD),
dove al posto di SSID va inserito il punto di accesso
e al posto di PASSWORD la chiave per accedervi
(quest’ultima può essere una stringa vuota se non è
richiesta).
Per controllare se la board Fishino è correttamente
connessa il comando è uin8_t Fishino.status(). La
funzione ritorna TRUE se la connessione ha avuto
successo, FALSE altrimenti. Nello spezzone di codi-
ce presente nel Listato 3 viene tentata la connessio-

Listato 4
uint32_t connecTime;
void setup()
{
	<parte precedente dello sketch>....
	 connectTime = millis();
}	

void loop()
{
	 // controlla la connessione ogni 10 secondi
	 if(millis() - connectTime > 10000) {

		 // resetta il tempo
		 connectTime = millis();

		 // controlla se connesso
		 uint8_t stat = Fishino.status();

		 // se non connesso, tenta la riconnessione
		 if(stat != STATION_GOT_IP) {
			 if(Fishino.begin(“MIO_SSID”, “MIA_PASSWORD”))
				 stat = STATION_GOT_IP;
		 }

		 // se connesso, salva i dati sul server
		 if(stat == STATION_GOT_IP) {
	 	 	 salvaDatiSulServer(); // funzione da definire!!!
	 }

	 // qui legge i sensori e li memorizza sulla SD
	 leggiSensoriEMemorizza(); // funzione da definire!!!
}

Listato 5
Fishino.config(IPAddress(192, 168, 1, 251));

CARATTERISTICHE
TECNICHE
g	Alimentazione: 12 Vcc o USB
g	Completamente compatibile con

Arduino Uno
g	Scheda WiFi a bordo, con possibi-

lità di funzionamento in modalità
stazione, access point o entrambe
contemporaneamente

g	 Interfaccia per schede di memoria
MicroSD a bordo

g	RTC (Real Time Clock) a bordo con
batteria al litio di mantenimento

g	Sezione di alimentazione a 3,3 V
potenziata

g	Connettore aggiuntivo sfalsato
in modo da risolvere il problema
dell’incompatibilità di Arduino con
le schede millefori.

ne in un
ciclo infinito
finchè non ha esito
positivo.
Questo tipo di connessione (eseguita nella Setup)
è adatto ad una postazione fissa, ovviamente. Nel
caso si utilizzi il Fishino in mobilità, è consigliabile
spostare la connessione nel loop() e tentarla ogni
tanto mentre si fanno altre attività.
In questo modo è possibile, ad esempio, raccogliere

36 Ottobre 2015 ~ Elettronica In

Elettronica In ~ Ottobre 2015 37

dei dati da un sensore, memorizzarli sulla scheda
SD e, quando viene rilevata una connessione fun-
zionante, inviarli ad un computer remoto (Listato
4). In questo esempio (volutamente abbreviato), nel-
la setup() viene letto il tempo corrente e salvato nella
variabile connectTime; successivamente nel loop()
viene controllato il tempo passato (millis() - connect-
Time) e quando questo supera i 10 secondi viene
eseguito un test sulla connessione; se non connesso
si tenta la connessione al server e, in caso di suc-
cesso viene eseguita una funzione (da definire) che
salva in rete i dati letti in precedenza.
Il loop continua successivamente tramite un’altra
funzione (anch’essa da definire) che legge qualche
sensore e memorizza i dati localmente, ad esempio
su una scheda SD.
Con uno sketch simile è possibile quindi realiz-
zare un semplice datalogger che non solo legge e
memorizza su scheda SD i dati ma che, in presenza
di una connessione di rete, è in grado di salvarli in
modo totalmente automatico ad intervalli di tempo
predefiniti.
Per configurare un IP statico ed eventualmente i
servers DNS, il gateway e la subnet della rete locale
si utilizzano queste funzioni:
bool Fishino.config(IPAddress local_ip)
bool Fishino.config(IPAddress local_ip, IPAddress
dns_server)
bool Fishino.config(IPAddress local_ip, IPAddress
dns_server, IPAddress gateway)
bool Fishino.config(IPAddress local_ip, IPAd-
dress dns_server, IPAddress gateway, IPAddress
subnet)
In pratica, la prima è adoperata per impostare un IP
statico, se necessario.
Nel Listato 5 vediamo come è possibile impostare
un IP statico su 192.168.1.251
Se non utilizzata l’IP sarà richiesto dinamicamente
al router.
E’ ovviamente possibile anche disconnettersi dalla
rete WiFi. Il comando per eseguire questa operazio-
ne è bool Fishino.disconnect(void).

Qui di seguito, invece, alcune funzioni utilizza-
te per controllare i parametri della connessione,
in particolare per leggere il MAC del modu-
lo WiFi la funzione è const uint8_t* Fishino.
macAddress(void)
Mentre per la lettura dell’IP acquisito dal modulo
WiFi (utile nel caso si sia impostato un IP dinami-
co) il comando da richiamare è IPAddress Fishino.
localIP() come mostrato ad esempio nel Listato 6.
Per leggere la maschera della sottorete e dell’in-
dirizzo IP del gateway potete richiamare queste
funzioni:
IPAddress Fishino.subnetMask()
IPAddress Fishino.gatewayIP()
Le funzioni indicate sopra sono state nominate in
modo assolutamente simile a quelle delle analoghe
funzioni delle librerie Ethernet e WiFi di Arduino,

Listato 6
	 Serial.print(“Il mio IP è : “);
	 Serial.println(Fishino.localIP());

Listato 7
Fishino.setApIPInfo(
	 	 IPAddress(192, 168, 100, 1),	 	 // IP del Fishino
	 	 IPAddress(192, 168, 100, 1),	 	 // Gateway del Fishino, solitamente come l’IP
		 IPAddress(255, 255, 255, 0)		 // Netmask (maschera di sottorete) del Fishino

);

Listato 8
	 Serial.print(“Sono connesso a : “);
	 Serial.println(Fishino.SSID());

per poter semplificare il porting del codice esistente.
Tuttavia le potenzialità superiori di Fishino, ed in
particolar modo la possibilità di funzionare anche
in modalità Access Point senza bisogno di un’infra-
struttura esistente, hanno reso necessario studiare
nuove funzioni per quanto riguarda la modalità
Stazione tra cui:
bool Fishino.setStaIP(IPAddress ip)
bool Fishino.setStaMAC(uint8_t const *mac)
bool Fishino.setStaGateway(IPAddress gw)
bool Fishino.setStaNetMask(IPAddress nm)
Mentre per la modalità Access Point sono state
create:		
bool Fishino.setApIP(IPAddress ip)
bool Fishino.setApMAC(uint8_t const *mac)
bool Fishino.setApGateway(IPAddress gw)
bool Fishino.setApNetMask(IPAddress nm)
bool Fishino.setApIPInfo(IPAddress ip, IPAd-
dress gateway, IPAddress netmask)
In particolare, l’ultima permette di impostare tutti
i parametri IP del Fishino utilizzato come router

Dettaglio del modulo WiFi
ESP12 appositamente

programmato per poter
lavorare con Fishino.

36 Ottobre 2015 ~ Elettronica In

Elettronica In ~ Ottobre 2015 37

WiFi in un comando singolo (Listato 7).
Vedremo come usarle a fine articolo con un esempio
completo. Per poter leggere i dati della connessione
WiFi, quali lo SSID del router a cui ci si è connessi,
il MAC del medesimo (BSSID), la potenza in dBm
del segnale (RSSI) ed il tipo di protezione della rete,
potete utilizzare queste funzioni:
const char* Fishino.SSID()
const uint8_t* Fishino.BSSID()
int32_t Fishino.RSSI()
uint8_t Fishino.encryptionType()
Come mostrato ad esempio nel Listato 8.
Esistono poi alcune funzioni utilizzate per esegui-
re una lista delle reti WiFi disponibili con le loro
caratteristiche:
uint8_t Fishino.scanNetworks()
Questa operazione esegue una scansione delle reti
WiFi disponibili e ritorna il numero di reti trovate.
Una volta eseguita la scanNetworks, è possibile
utilizzare le seguenti funzioni, che hanno come pa-
rametro il numero della rete da esaminare (numero
di reti ritornate da scanNetworks() - 1).
La funzione const char* Fishino.SSID(uint8_t net-

workItem) ritorna invece lo SSID, ovvero il nome
della rete richiesta come mostrato nel Listato 9.
Questo esempio stampa sulla seriale un’elenco delle
reti wireless trovate.
Per sapere il tipo di protezione della rete il coman-
do da usare è uint8_t Fishino.encryptionType(uint8_t
networkItem).
E’ possibile anche sapere la potenza del segnale del-
la rete richiesta con int32_t Fishino.RSSI(uint8_t
networkItem).
Nella classe FishinoClass sono presenti altre fun-
zioni meno utilizzate che tralasciamo per brevità.
Il codice della libreria è comunque ben commentato
e di facile interpretazione.

CLASSI FISHINOCLIENT E FISHINOSERVER
Queste due classi sono l’equivalente delle Ether-
netClient/WiFiClient ed EthernetServer/WiFiSer-
ver delle shield ethernet e WiFi di Arduino, e l’uso
è praticamente identico.
Ad esempio, per inviare una richiesta ad una pagina
web e stampare sulla seriale la risposta vediamo il
Listato 10.

Listato 9
	 uint8_t n = Fishino.scanNetworks();
	 if(n) {
		 Serial.print(“Trovate “);
		 Serial.print(n);
	 	 Serial.println(“ reti wifi:”);
		 for(int i = 0; i < n; i++) {
			 Serial.print(“Rete #”);
			 Serial.print(i);
			 Serial.print(“ : “);
			 Serial.println(Fishino.SSID(i));
		 }
	 }
	 else
		 Serial.println(“Nessuna rete WiFi trovata”);

Listato 10
	 // tenta la connessione al server
	 FishinoClient client;
	 if (client.connect(“www.google.com”, 80)) {

		 Serial.println(“connected to server”);

		 // esegue un request Http
		 client.println(“GET /search?q=arduino HTTP/1.1”);
		 client.println(“Host: www.google.com”);
		 client.println(“Connection: close”);
		 client.println();

	 	// legge la risposta finchè il client resta connesso
		 do {
	 		 // finchè ci sono bytes in arrivo.....
			 while (client.available()) {

				 // legge un carattere dal server
				 char c = client.read();

				 // e lo invia alla seriale
				 Serial.write(c);
			 }
		 }
		 while(client.connected());
		 Serial.println(“Client disconnected”);
	 }
 }

38 Ottobre 2015 ~ Elettronica In

Elettronica In ~ Ottobre 2015 39

A conclusione dell’articolo, presentiamo un esem-
pio completo che mostra una delle caratteristiche
più interessanti di Fishino, ovvero la possibiltà
di creare una propria infrastruttura di rete senza

Listato 11
#include <Flash.h>
#include <FishinoUdp.h>
#include <FishinoSockBuf.h>
#include <Fishino.h>
#include <SPI.h>

//
// CONFIGURAZIONE SKETCH -- ADATTARE ALLA PROPRIA RETE WiFi //
// WiFi SSID e PASSWORD
// potete cambiarle entrambe, verranno utilizzate
// per la creazione dell’infrastruttura WiFi
#define My_SSID	 “FISHINO”
#define My_PASS	 “”
// FINE CONFIGURAZIONE //
//

// crea un server in ascolto sulla porta 80 (HTTP standard)
FishinoServer server(80);

void setup()
{
	 // apre la porta seriale
	 Serial.begin(115200);

	 // attende l’apertura della porta seriale.
 // Necessario solo per le boards Leonardo
	 while (!Serial)
		 ;

	 // inizializza il modulo SPI
	 SPI.begin();
	 SPI.setClockDivider(SPI_CLOCK_DIV2);
	
	 // resetta e testa il modulo WiFi
	 if(Fishino.reset())
		 Serial << F(“Fishino WiFi RESET OK\r\n”);
	 else
	 {
		 Serial << F(“Fishino RESET FAILED\r\n”);
		
		 // attende per sempre in caso di errore
		 while(true)
			 ;
	 }

	 Serial << F(“Fishino WiFi AP web server\r\n”);

		 // imposta la modalitè SOFT AP (crea una rete autonoma)
	 Fishino.setMode(SOFTAP_MODE);

	 // ferma il server DHCP, necessario per impostare l’IP della rete
	 Fishino.softApStopDHCPServer();
	
	 // imposta i parametri IP dell’access point
	 // in questo caso la rete viene creata su 192.168.100.0-255
	 // ed il Fishino assume l’IP 192, 168, 100, 1
	 Fishino.setApIPInfo(
	 	 IPAddress(192, 168, 100, 1), 	 	 // IP
	 	 IPAddress(192, 168, 100, 1), 	 	 // gateway
		 IPAddress(255, 255, 255, 0) 		 // netmask
);

	 // imposta i parametri di connessione WiFi, ovvero nome della rete(SSID)
	 // e password. Se non avete modificato l’esempio, la rete sarà chiamata FISHINO
	 // e sarà una rete aperta, senza password
	 Fishino.softApConfig(My_SSID, My_PASS, 1, false);
	
	 // riavvia il server DHCP in modo da poter fornire gli indirizzi
	 // in automatico a tutte le stazioni che si connettono
	 Fishino.softApStartDHCPServer();
	
	 // inizia l’attesa delle connessioni
	 server.begin();
}

void loop()
{
	 // attende nuovi clienti
	 FishinoClient client = server.available();
	
	 if (client)
	 {
		 Serial.println(“new client”);
		
		 // ogni richiesta http termina con una linea vuota
		 boolean currentLineIsBlank = true;
		 while (client.connected())
		 {
			 if (client.available())
			 {
				 char c = client.read();
				 Serial.write(c);

bisogno di un router esterno, alla quale connettersi
in mobilità, per esempio con un cellulare.
Un’applicazione simile potrebbe essere usata, ad
esempio, per monitorare alcuni sensori all’aperto

Fig. 1 Fig. 2

38 Ottobre 2015 ~ Elettronica In

Elettronica In ~ Ottobre 2015 39

tramite un cellulare da una certa distanza, realiz-
zando così dispositivi completamente portatili.
Un’altra interessante applicazione potrebbe esse-
re un comando remoto via WiFi sempre tramite
browser web sul cellulare.
L’esempio, nel Listato 11 crea una rete WiFi “volan-
te”, con nome (SSID) ‘FISHINO’, senza password
(rete open) ed avvia un piccolo server che su richie-
sta fornisce una lettura dei sei ingressi analogici di
Fishino. Una volta lanciato lo sketch, occorre sele-
zionare la rete wireless FISHINO tra le reti dispo-
nibili (Fig. 1) e aprendo l’indirizzo 192.168.100.1 sul
browser si ottiene il risultato visualizzato in Fig. 2.
Gli esempi qui riportati sono comunque contenuti,
insieme ad altri, nella libreria Fishino.
Un’ultima nota sugli I/O occupati dalle estensioni,
e che non vanno utilizzati come I/O quando sono
attivi i componenti aggiuntivi. Il modulo WiFi uti-
lizza i seguenti pins: 7, 10, 11, 12 e 13. È disattivabile
completamente con un ponticello tra il pin CH_PH
del connettore ESP e la massa. La scheda microSD
utilizza i seguenti pins: 4, 11, 12 e 13 ed impone che
il pin 7 sia impostato ad output digitale. Per libe-

rare i ports usati basta non inserire alcuna scheda
nel connettore. Il modulo RTC comunica via i2c
utilizzando i pins SCL e SDA, abbinati nell’UNO ai
ports analogici A4 ed A5.
Continueremo in un prossimo articolo con la descri-
zione della libreria FishinoWebServer che permette
la realizzazione di un piccolo ma completo server
web, che è la base dell’esempio di Home Automa-
tion mostrato in breve nel numero scorso.

	 		 	 // se si è arrivati a fine linea (carattere ‘newline’ ricevuto
				 // e la linea è vuota, la richiesa http è terminata
				 // quindi è possibile inviera una risposta
	 		 	 if (c == ‘\n’ && currentLineIsBlank)
				 {
					 // invia uno header standard http
					 client.println(“HTTP/1.1 200 OK”);
					 client.println(“Content-Type: text/html”);
					 client.println(“Connection: close”); // la connessione verrà chiusa automaticamente una volta inviata la risposta
					 client.println(“Refresh: 5”); // aggiorna la pagina automaticamente ogni 5 secondi
					 client.println();
					 client.println(“<!DOCTYPE HTML>”);
					 client.println(“<html>”);
					
					 // invia il valore di tutti i pins analogici
	 		 	 	 for (int analogChannel = 0; analogChannel < 6; analogChannel++)
					 {
						 int sensorReading = analogRead(analogChannel);
						 client.print(“analog input “);
						 client.print(analogChannel);
						 client.print(“ is “);
						 client.print(sensorReading);
						 client.println(“
”);
					 }
					 client.println(“</html>”);
					 break;
				 }
	 		 	 if (c == ‘\n’)
				 {
					 // inizio di una nuova linea
					 currentLineIsBlank = true;
				 }
	 		 	 else if (c != ‘\r’)
				 {
					 // sono stati ricevuti dei caratteri nella linea corrente
					 currentLineIsBlank = false;
				 }
			 }
		 }
		 // lascia tempo al browser per ricevere i dati
		 delay(1);

		 // chiudi la connessione
		 client.stop();
		 Serial.println(“client disonnected”);
	 }
} 	

g

La board Fishino (cod. FISHINOUNO) viene forni-
ta montata e collaudata. Può essere acquistata
presso Futura Elettronica al prezzo di Euro 36,00.
Il prezzo si intende IVA compresa.

Il materiale va richiesto a:
Futura Elettronica, Via Adige 11, 21013 Gallarate (VA)

Tel: 0331-799775 • Fax: 0331-792287
http://www.futurashop.it

per il MATERIALE

