
2 Febbraio 2017 ~ Elettronica In

Elettronica In ~ Febbraio 2017 3

qui proposta non è
limitata al giorno degli
innamorati ma trova
impiego nella realtà
quotidiana, perché
implementa anche una
funzione di gestione
della “lista della spesa”,
che permette di memo-
rizzare una sequenza
di prodotti, inviandone
il nome tramite un
messaggino Telegram
in qualsiasi momento e
permettendo di con-
sultarla e/o stamparla,
sempre da remoto. Ciò
trova applicazione ad
esempio in un ristoran-
te, dove l’avventore può
fare il proprio ordine,
che verrà stampato alla
cassa in automatico.
L’applicazione ci per-
mette di introdurre una
libreria di interfaccia
con Telegram apposita-
mente sviluppata, che
ci consentirà non solo
di controllare Fishino
da qualsiasi parte del
mondo, ma anche di
leggerne gli ingressi
e, se vogliamo, di farci
avvisare in caso si veri-
fichino eventi partico-
lari, sempre tramite un
messaggio Telegram.
La libreria è dotata dei
necessari strumenti di

“sicurezza”: è possibi-
le lasciare l’accesso a
tutti, vincolarlo solo ad
utenti specifici oppure,
se necessario, lasciar-

icordate il progetto
Fish’n Tweets, che

permetteva di controlla-
re gli I/O di Fishino tra-
mite dei tweet? Ebbene,
si è trattato del nostro
primo esperimento di
interazione tra Fishino
e il mondo dei Social.
L’applicativo è tutt’ora
valido ma, a causa della

“lentezza” di Twitter, a
volte il tempo intercorso
tra un comando e la sua
esecuzione può supera-
re i 20 secondi.
Twitter inoltre è
piuttosto complesso
da gestire, soprattutto
nella fase iniziale di
creazione delle chiavi
di accesso, dell’utente

“robot”, eccetera.
Visto che volevamo
tornare sull’argomento
e che San Valentino
incombe, abbiamo
pensato di prendere i
classici “due piccioni
con una fava” realiz-
zando un’applicazio-
ne, -stavolta basata
sul servizio di instant
messaging Telegram-
che può essere un
modo suggestivo per
mandare messaggi per-
sonalizzati alla propria
amata, stampati da una
micro-stampante.
I messaggi possono
essere sia personalizzati
che scelti da un data-
base predisposto su un
server. L’applicazione

R

lo aperto a tutti salvo
alcuni utenti “disturba-
tori”. Come vedrete la
libreria si presenta in
modo piuttosto modu-
lare e semplice da usare,
nascondendo all’utente
i dettagli tecnici dell’im-
plementazione e della
comunicazione con
Fishino. Questi applica-
tivi possono funzionare
anche con una scheda
Arduino dotata di shield
WiFi, tuttavia dipende
dallo shield. Quello più
comunemente disponi-

bile (ed economico) non
supporta la connessione
sicura (SSL/HTTPS),
quindi non è utilizzabi-
le per l’interfacciamento
con i social che la ri-
chiedono, come Twitter,
Telegram ed altri.
Disponendo, invece, di
uno shield più recente,
è possibile adattare la
libreria ad esso.

TELEGRAM E I SUOI “BOT”
Cos’è un “bot”? In
sintesi, è un account

“virtuale” di Telegram,

2 Febbraio 2017 ~ Elettronica In

Elettronica In ~ Febbraio 2017 3

Applicazioni

Appoggiandoci a un bot, stampiamo
con una stampantina termica remota
messaggi composti su Telegram. Una
soluzione dalle mille applicazioni,
utilizzabile per stampare liste e ordini
in un locale e, perché no, per mandare
messaggi stampati alla propria “bella”
il giorno di San Valentino e non solo.

NOTES

MACHINE
CON FISHINO

 di MASSIMO DEL FEDELE

seconda della piattafor-
ma. Una volta installato
ed eseguito, vi troverete
di fronte alla schermata
di Fig. 1. Per creare il
bot bisogna ricorre-
re al “padre di tutti i
bot”, ovvero all’utente
BotFather: è sufficiente
digitarne il nome nella
casella di ricerca (Fig. 2).
Vi apparirà la schermata
introduttiva di BotFa-
ther; cliccate su Start
(in basso) per avviare il
bot; BotFather rispon-
derà con un messaggio
esplicativo contenente
una lista dei principali
comandi disponibili
(Fig. 3).
Siccome vogliamo
creare un nostro bot,
clicchiamo sul comando
/newbot (Fig. 4).
BotFather ci chiede di
dare un nome al nostro
bot; scegliamo un nome
a caso, per esempio
Pippo (Fig. 5).
Ci viene quindi chiesto
uno ‘user name’ per il
nostro bot; questo deve
per forza essere unico
e terminare in ‘bot’; nel
caso scegliessimo uno
username già occupato
BotFather ci avviserà e
ci imporrà di cambiarlo.
In questo caso PippoBot
è già in uso (ovviamen-
te!), quindi scegliere-
mo PippoRobot che
casualmente è libero;
BotFather ci avviserà

dal server poco dopo
essere stati processa-
ti;

•	 non possono iniziare
una conversazio-
ne ma rispondono
se interessati; per
comunicare con un
bot occorre aggiun-
gerlo ad un gruppo
oppure inviargli un
messaggio iniziale;

•	 hanno un “nome
utente” che finisce
sempre in “bot”; per
esempio, TriviaBot,
Fishino_bot;

•	 anche se aggiunti a
un gruppo, non rice-
vono tutti i messaggi
se non impostati allo
scopo.

CREIAMO IL NOSTRO BOT
Iniziamo subito con la
creazione del bot che ci
servirà per interagire
con Fishino.
Per prima cosa, se non
l’avete ancora fatto,
occorre scaricare ed in-
stallare Telegram; nelle
immagini in queste
pagine vedete l’instal-
lazione su un desktop
Linux (l’abbiamo fatto
per catturare le scher-
mate), ma normalmente
l’applicazione è installa-
ta su uno smartphone.
Nell’installazione vi
verrà chiesto di confer-
mare il vostro numero
di telefono e/o un
codice di sicurezza, a

per creare il quale non
servono numeri di
telefono, dati personali,
eccetera. Questo tipo
di account deve essere
creato da un account

“reale”; per il resto, può
funzionare come un
utente simulato, riceve-
re ed inviare messaggi,
ed altro.
A noi interessa qualcosa
che possa interagire sia
con il nostro Fishino che
con uno o più utenti;
creeremo quindi un bot
che verrà controllato

da Fishino e che sarà
in grado di rispondere
alle nostre richieste e/o
inviarci messaggi.
Il bot è quindi un robot,
programmabile per
eseguire determinate
azioni. I bot:
•	 non mostrano il loro

stato (online/offline);
sono sempre attivi
e “vedono” all’istan-
te (o quasi) i nostri
messaggi;

•	 hanno una memoria
limitata; i vecchi mes-
saggi possono sparire

4 Febbraio 2017 ~ Elettronica In

Elettronica In ~ Febbraio 2017 5

dell’avvenuta creazione del
nostro bot e ci darà le istruzioni
per utilizzarlo da remoto (Fig. 6).
Come potete notare, il nostro bot
è accessibile tramite l’indirizzo
Telegram:

telegram.me/PippoRobot

e per controllarlo è necessario
possedere il token di sicurezza
fornito da BotFather:

Use this token to access the HTTP
API:
nnnnnnnnn:XXXXXXX-
YYYYYYY_
ZZZZZZZZZZZZZZZZZZZ

Il token (qui oscurato) è indi-
spensabile per garantire la sicu-
rezza che nessuno possa “ma-
nomettere” il nostro bot. Questa
token andrà inserita nel codice
del nostro sketch, come vedremo
in seguito, quindi prendetene
nota e, soprattutto, mantenetela
ben segreta visto che chiunque
ne viene in possesso è in grado di
fare qualsiasi cosa con il nostro
bot, compreso cancellarlo.
Clicchiamo ora sul link telegram.
me/PippoRobot (Fig. 7) e successi-
vamente sul comando Start, che
avvierà il nostro bot inviandogli
un messaggio iniziale (Fig. 8).
Ecco fatto! Abbiamo creato il
nostro primo bot di Telegram!

LA LIBRERIA FISHGRAM
Una volta creato il nostro bel-

lissimo bot occorre, perché sia
utile, potergli inviare e ricevere
messaggi, oltre che dall’app Tele-
gram, anche attraverso il nostro
Fishino.
Per interagire con il bot Telegram
utilizza il protocollo HTTPS
con un formato ben specifico; in
particolare, i comandi possono
essere impartiti tramite diretti-
ve HTTP GET e POST, e negli
headers http inviati deve sempre
essere presente la nostra token.
Per esempio, una richiesta di tipo

‘getUpdates’, che ci permette di

richiedere i messaggi ricevuti dal
bot ha il formato seguente:
GET /botTOKEN/getUpdates?offset=

nnn&timeout=4&limit=1&allowed_

updates=messages HTTP/1.1

User-Agent: FishGram 1.0.0

Host: api.telegram.org

In questo formato di richiesta:
•	 TOKEN è la nostra token di

accesso, vista al paragrafo
precedente;

•	 offset=nnnn rappresenta il
primo ID di messaggio cui
siamo interessati;

•	 limit=1 indica a Telegram di
fornirci un solo messaggio
per richiesta (Telegram può
fornire più messaggi per ogni
richiesta di aggiornamento);

•	 allowed_updates=messages
indica che siamo interessati
solo ai messaggi e non, per
esempio, ai file audio e/o
immagini.

Possiamo provare il comando

Fig. 1 - Installazione di Telegram.

Fig. 2 - Ricerca di BotFather.

4 Febbraio 2017 ~ Elettronica In

Elettronica In ~ Febbraio 2017 5

direttamente sul browser, im-
mettendo nella casella dell’indi-
rizzo il testo seguente (sostituite
TOKEN con il vostro token di
accesso):

https://api.telegram.org/botTOKEN/
getUpdates?offset=0&timeout=4&li
mit=1&allowed_updates=messages

Scrivete, ovviamente, tutto su
una sola riga. Telegram risponde-
rà con un testo in formato JSON
come il seguente:

{“ok”:true,”result”:[{“update_

id”:904783368,

“message”:{“message_id”:2,”f

rom”:{“id”:nnnnnnnnn,”first_

name”:”Massimo”,”last_name”:”Del Fe

dele”},”chat”:{“id”:nnnnnnnnn,”fir

st_name”:”Massimo”,”last_name”:”Del

Fedele”,”type”:”private”},”date”:14

83380231,”text”:”ciao Pippo”}}]}

Come si può notare, il testo
di risposta contiene parecchie

informazioni, tra cui il mittente
del messaggio, l’id del messaggio
(tramite il quale, per esempio, in
una chiamata successiva invian-
do come offset=id+1 potremo

richiedere i messaggi a partire
dal successivo), eccetera.
È facile capire che, senza un’ap-
posita libreria software, il fun-
zionamento della cosa risulta
piuttosto complesso. Se l’invio
della richiesta è relativamente
semplice (basta utilizzare un
oggetto FishinoClient, collegarlo
all’indirizzo richiesto, ed inviare
una serie di stringhe di caratteri),
l’analisi del JSON restituito non
è altrettanto banale, soprattutto
a causa delle risorse limitate del
nostro Fishino, specialmente
per quanto riguarda la memoria
RAM.
Per questo ci viene in aiuto la
libreria JSONStreamingParser,
scritta per il progetto Fish’n Twe-
ets, che è in grado di “digerire”
l’output di Telegram, carattere
per carattere, senza bisogno di
memorizzare nulla, e di spezzet-
tarlo in tanti elementi del tipo
nome: valore e, ad ogni elemento
ricevuto, chiamare una funzione
da noi definita.
Siccome spiegare il funzionamen-
to della libreria richiederebbe
metà delle pagine di questo fasci-Fig. 3 - Risposta di BotFather.

Fig. 4 - Creazione del nostro Bot.

6 Febbraio 2017 ~ Elettronica In

Elettronica In ~ Febbraio 2017 7

colo, se non oltre, partiremo da
un piccolo sketch di esempio per
mostrarne l’utilizzo; chi volesse
approfondire troverà il codice
della libreria stessa molto com-
mentato e quindi relativamente
facile da capire. Affronteremo co-
munque, durante la spiegazione
dell’utilizzo, di alcune peculiarità
e scelte apparentemente strane
che abbiamo effettuato nella
scrittura della stessa.

UN PRIMO SKETCH,
SEMPLICE SEMPLICE
Iniziamo... dall’inizio! Proviamo
a visualizzare i messaggi che
vengono inviati al nostro bot sul
monitor seriale; per far questo lo
sketch è davvero semplicissimo.
Per questo (primo) esempio, inse-
riremo il codice completo (com-
presa l’inizializzazione di Fishino,
la connessione al router WiFi,
eccetera, in modo da permettere
a chiunque di collaudarlo “al
volo” semplicemente copiando
il codice nell’IDE; per i prossimi
esempi eviteremo tutto questo ed
inseriremo solo il codice specifico
di FishGram (Listato 1).

quali è costituito dalla funzione
di gestione degli eventi (di cui
parleremo tra poco):

bool FishGramHandler(uint32_t id,

const char *firstName, const char *la-

stName, const char *message)

Il secondo è “inizializzazione di
FishGram”:

	 // start FishGram

	 FishGram.

event(FishGramHandler);

	 FishGram.begin(F(MY_TELE-

GRAM_TOKEN));

E il terzo è la chiamata nel loop:

	 FishGram.loop();

Semplice, vero? Ma come fun-
ziona? Ebbene, a differenza della
maggior parte degli sketch cui
siamo abituati, la libreria Fi-
shGram funziona per eventi; una
volta inizializzata, resta quasi
invisibile e, soprattutto, occupa

Come potete vedere, il grosso
dello sketch è l’inizializzazione
di Fishino, il collegamento al rou-
ter, eccetera. Per quanto riguarda
FishGram in pratica troviamo
rilevanti tre punti, il primo dei

Fig. 5 - Assegnazione del nome al Bot.

Fig. 6 - Completamento del bot.

6 Febbraio 2017 ~ Elettronica In

Elettronica In ~ Febbraio 2017 7

pochissime risorse di calcolo e di
memoria. L’importante è che la
chiamata FishGram.loop();
dentro al loop venga eseguita
spesso.
Questa chiamata, che normal-
mente dura poche decine di mi-
crosecondi, consente alla libreria
di gestire un timer interno e di ri-
chiamare, ad intervalli prefissati,
il server di Telegram e richiedere
eventuali aggiornamenti.
Se questi aggiornamenti non
sono presenti, torna senza fare
nulla; se invece c’è qualche
novità la raccoglie, organizza
e chiama la funzione evento
FishGramHandler() passan-
dole come parametri l’id, il nome
ed il cognome del mittente ed il
testo del messaggio.
Con questa funzione possiamo
quindi stampare sulla porta se-
riale quello che riceviamo.
Le due chiamate nel setup, ovve-
ro la FishGram.event() e la
FishGram.begin(), servono
rispettivamente per collegare la

nostra funzione di gestione degli
eventi e per dire a FishGram chi
è il nostro bot tramite il token.
Non saremo quindi noi, dentro
allo sketch, a doverci ricordare di
chiedere a FishGram gli aggior-

namenti “ogni tanto”, ma con
questo meccanismo sarà la stessa
libreria ad avvisarci se e solo se
arriva qualcosa di interessante
dal nostro bot.
Quali sono gli svantaggi di
un simile metodo? In pra-
tica ce n’è solo uno: se la
FishGram.loop() non viene
eseguita abbastanza spesso il
programma risponde male. Per
esempio, se infilassimo una
delay(1000) dentro alla loop(), la
libreria riuscirebbe ad elaborare
solo un carattere ricevuto ogni
secondo, quindi passerebbero
giornate prima di avere una
risposta, o, più probabilmente, il
server di Telegram chiuderebbe
la connessione prima.
Quindi è ben possibile (anzi, lo
scopo di questo sistema è proprio
quello!) far eseguire al nostro
Fishino qualcos’altro, mentre è
in attesa di messaggi, ma questo
qualcos’altro non deve nè bloc-
care l’esecuzione del loop() nè
impiegare troppo tempo. Quindi,
niente delay(), niente while() con
durate lunghe e/o attesa di pul-
santi da premere, eccetera. Tutto Fig. 8 - Messaggio iniziale del bot.

Fig. 7 - Avvio del bot.

8 Febbraio 2017 ~ Elettronica In

Elettronica In ~ Febbraio 2017 9

dev’essere eseguito senza blocca-
re il loop, quindi con millis() per
i ritardi e controlli “volanti” per
eventuali pulsanti da rilevare.
Esistono alternative ma vanifi-
cano in parte i vantaggi dell’ap-
proccio; ad esempio, se vogliamo
attendere che un I/O vada a
livello HIGH, invece di fare:

while(!digitalRead(5))

	 ;

possiamo scrivere:

while(!digitalRead(5))

	 FishGram.loop();

In modo che FishGram continui
ad essere richiamata nell’atte-
sa. Allo stesso modo, invece di
utilizzare:

delay(1000);

dovremo procedere con l’utilizzo
della millis() in questo modo:
uint32_t tim = millis() + 1000;

while(millis() < tim)

	 FishGram.loop();

Ma è possibile aggiungere alla
libreria una funzione del tipo
seguente?

FishGram.aspettaMessaggio()

Certamente si... ma se il messag-
gio non arriva, lo sketch rimane
bloccato all’infinito oppure per
un tempo prefissato senza co-
munque poter fare altro, quindi
abbiamo appositamente evitato
di introdurla.
Sul monitor seriale verrà visua-
lizzato qualcosa di simile:

Fishino WiFi RESET OK

Connecting to AP...OK

Waiting for IP........OK

Ho ricevuto un messaggio da ‘Mas-

simo’

Listato 1
#include <Fishino.h>
#include <JSONStreamingParser.h>
#include <FishGram.h>
#include <SPI.h>

#define MY_SSID	 “IL_MIO_SSID”
#define MY_PASS	 “LA_MIA_PASSWORD”

// se volete un IP dinamico basta commentare/eliminare le 3 righe seguenti
#define IPADDR	 192, 168, 1, 251
#define GATEWAY	 192, 168, 1, 1
#define NETMASK	 255, 255, 255, 0

#define MY_TELEGRAM_TOKEN “LA_TOKEN_DEL_MIO_BOT_TELEGRAM”

#ifdef IPADDR
	 IPAddress ip(IPADDR);
	 #ifdef GATEWAY
		 IPAddress gw(GATEWAY);
	 #else
		 IPAddress gw(ip[0], ip[1], ip[2], 1);
	 #endif
	 #ifdef NETMASK
		 IPAddress nm(NETMASK);
	 #else
		 IPAddress nm(255, 255, 255, 0);
	 #endif
#endif

// fishgram event handler -- just display message on serial port
bool FishGramHandler(uint32_t id, const char *firstName, const char *lastName, const char *message)
{
	 Serial << F(“Ho ricevuto un messaggio da ‘”) << firstName << “’\n”;
	 Serial << F(“Il messaggio dice: ‘”) << message << “’\n”;
	 return true;
}

void setup(void)
{
	 Serial.begin(115200);
	 while (!Serial)
		 ;

	 while(!Fishino.reset())
		 Serial << F(“Fishino RESET FAILED, RETRYING...\n”);
	 Serial << F(“Fishino WiFi RESET OK\n”);

	 Fishino.setMode(STATION_MODE);
	 Fishino.setPhyMode(PHY_MODE_11G);

	 Serial << F(“Connecting to AP...”);
	 while(!Fishino.begin(MY_SSID, MY_PASS))
	 {
		 Serial << “.”;
		 delay(2000);
	 }
	 Serial << “OK\n”;
	
#ifdef IPADDR
	 Fishino.config(ip, gw, nm);
#else
	 Fishino.staStartDHCP();
#endif

	 Serial << F(“Waiting for IP...”);
	 while(Fishino.status() != STATION_GOT_IP)
	 {
		 Serial << “.”;
		 delay(500);
	 }
	 Serial << F(“OK\n”);

	 // start FishGram
	 FishGram.event(FishGramHandler);
	 FishGram.begin(F(MY_TELEGRAM_TOKEN));
}

void loop(void)
{
	 FishGram.loop();
}

8 Febbraio 2017 ~ Elettronica In

Elettronica In ~ Febbraio 2017 9

Il messaggio dice: ‘Ciao Pippo,

come stai?’

INVIARE UN MESSAGGIO
DA FISHINO A UN UTENTE
Se ricordate, nel paragrafo
sulle differenze tra un bot ed un
umano era specificato un punto
apparentemente poco importante
ma che invece è fondamentale:
un bot non può iniziare una
conversazione. Non possiamo
quindi dire al nostro Fishino

“cerca Giuseppe e spediscigli un
messaggio”. Questa è stata una
scelta ben precisa di chi ha svi-
luppato le API di Telegram, per
impedire un uso improprio dei
bot. Come potete ben immagina-
re, se ci fosse questa possibilità
sarebbe semplicissimo realizzare
uno spam-bot in grado di inviare
migliaia di messaggi indeside-
rati a chiunque! Come possiamo
fare, quindi? Semplicemente, una
volta inviato almeno un messag-
gio al nostro bot, questo avrà a
disposizione l’id della chat (che
poi è anche l’id di chi ha invia-
to il messaggio) e potrà quindi
rispondere a questo utente e
ad altri eventuali che l’hanno
contattato. Vediamo quindi una

piccola modifica allo sketch,
che ci permette di ottenere un
feedback da parte di FishGram
sul nostro telefonino; per far
questo è sufficiente modificare la
funzione di gestione degli eventi
come nel Listato 2. E, al prossimo
messaggio inviato, il nostro bot,
oltre a mostrarci l’output sul mo-
nitor seriale, ci risponderà come
mostrato in Fig. 9.
La funzione FishGram.sendMes-
sage(), non dovendo attendere al-
cunché, si comporta come siamo
abituati: viene richiamata dove
vogliamo, esegue il suo compito
e poi ci lascia proseguire.
Il primo parametro, id, è l’id
dell’utente a cui si vuole inviare
il messaggio; il secondo è il mes-
saggio vero e proprio.

LA LIBRERIA IN DETTAGLIO
Come avete visto nei due esempi
precedenti, la libreria è piuttosto
semplice; contiene comunque
altre utili funzioni che vediamo

qui di seguito. La prima è:

// end - termina la libreria

//FishGram

bool end(void);

e in pratica non serve mai, a
meno di non utilizzare FishGram
sporadicamente e voler liberare
tutta la memoria che occupa.

// cancella i dati locali

FishGramClass &clear(void);

in pratica non è indispensabi-
le; libera la memoria utilizzata
da FishGram fino al prossimo
evento.

// abilita/disabilita la lista di

//utenti ammessi

FishGramClass &restrict(bool b =

true);

FishGramClass &noRestrict(void) {

return restrict(false); }

queste ultime due funzioni

La stampante termica
Per stampare i nostri messaggi inviati
da Telegram ci siamo avvalsi di una pic-
cola stampante alfanumerica (comun-
que stampa anche i caratteri del cinese)
a carta termica facilmente reperibile
in commercio e negli store on-line per
maker, come Adafruit e Sparkfun.
La stampantina è del tipo a 20 colonne
e stampa su rotolo di carta termica da
57,5 ±0,5 mm e si interfaccia tramite
una connessione seriale a livello TTL. Di
seguito ne elenchiamo le caratteristiche.
•tensione di alimentazione: 5÷9 Vcc;
•assorbimento max: 1,5 A;
•velocità di stampa: 50÷80 mm/s
•risoluzione: 8 pixel/mm, 384 pixel/linea
•larghezza effettiva di stampa: 48mm
•set caratteri: ASCII,GB2312-80 (cinese);
•font stampa: ANK:5×7, cinese: 12x24,24×24;
•protocol: TTL Serial, 19.200 baud;
•dimensioni (LxPxH): 111x65x57 mm;
•temperatura di esercizio: 5°÷ 50°C.

La stampante è la classica termica simile a molti modelli esistenti da anni,
però nasce -guardacaso- per il mondo Arduino; allo scopo viene fornita con
a corredo l’apposita libreria firmware. Nello specifico, nel nostro sketch per
Fishino abbiamo integrato e utilizzato la stessa libreria fornita da Adafruit.

Il sistema in versione San
Valentino: la stampante è

montata in un quadro in tema.

10 Febbraio 2017 ~ Elettronica In

Elettronica In ~ Febbraio 2017 11

sono utilissime per eseguire un
controllo su chi può mandare
messaggi al nostro bot; se attiva-
ta con restrict() la funzione scarta
automaticamente tutti i messaggi
provenienti da id non contenuti
nella lista al punto seguente.

// aggiunge un ID utente alla lista

//di utenti ammessi

FishGramClass &allow(uint32_t id);

questa funzione permette di
aggiungere un id utente alla lista
degli utenti ammessi; se la fun-
zione viene abilitata con restrict(),
solo gli utenti presenti in questa
lista vedranno accolti i loro mes-
saggi dal bot.

// aggiunge un ID utente alla lista

//di utenti bloccati

FishGramClass &block(uint32_t id);

Nel Listato 3 invece vediamo la
lista degli utenti bloccati; qualsia-
si id presente in questa lista viene
considerato come spam e quindi
ignorato. All’avvio, di default
FishGram legge l’ultimo mes-
saggio disponibile, lo scarta ed
attende nuovi messaggi; a volte è
desiderabile leggere anche mes-
saggi precedenti all’avvio, cosa
ottenibile con questa funzione. Se
introduciamo recoverOldMes-
sages(10), ad esempio, all’avvio,
FishGram recupererà i 10 mes-

Queste due funzioni permettono
di inviare un messaggio tramite
FishGram a un ID specifico:

// invia un messaggio ad un ID spe-

cifico pezzo per pezzo

bool startMessage(uint32_t const &id,

uint16_t len);

bool contMessage(const char *msg);

bool contMessage(const __FlashStrin-

gHelper *msg);

bool contMessage(char c);

bool endMessage(void);

queste cinque funzioni permetto-
no di inviare un messaggio pezzo
per pezzo, quindi comode se la
memoria RAM è scarsa. L’unico

“inghippo” è che è necessario
conoscere a priori la lunghezza
complessiva del messaggio, da
passare come parametro alla
startMessage(). Il messaggio può
poi essere inviato tramite varie
chiamate alla contMessage(), e
terminato con la endMessage().

LA NOTE MACHINE
Dopo aver esaminato la libreria
FishGram in dettaglio possiamo
vederne un’applicazione un po’

saggi precedenti:

// imposta la funzione di gestione

//degli eventi

FishGramClass &event(FishGramEvent

e);

Questa funzione installa il
gestore di eventi, come visto in
precedenza:

// invia un messaggio ad un ID

//specifico

bool sendMessage(uint32_t const &id,

const char *msg);

bool sendMessage(uint32_t const &id,

const __FlashStringHelper *msg);

Fig. 9
Risposta
del bot.

Listato 2
// fishgram event handler -- display message on serial port and give feedback to sender
bool FishGramHandler(uint32_t id, const char *firstName, const char *lastName, const char *message)
{
	 Serial << F(“Ho ricevuto un messaggio da ‘”) << firstName << “’\n”;
	 Serial << F(“Il messaggio dice: ‘”) << message << “’\n”;

	 String s;
	 s = “Ciao, “;
	 s += firstName;
	 s += “, ho ricevuto il tuo messaggio ‘”;
	 s += message;
	 s += “’”;
	 FishGram.sendMessage(id, s.c_str());
	 return true;
}

10 Febbraio 2017 ~ Elettronica In

Elettronica In ~ Febbraio 2017 11

più complessa. In principio le
cose sono abbastanza semplici:
basta “trasformare” i messaggi
in comandi per il nostro Fishino,
eseguire questi comandi ed invia-
re un’eventuale risposta/confer-
ma al mittente. Come dicevamo
nell’introduzione, abbiamo pen-
sato di implementare un sistema
che permetta di:
•	 stampare messaggi inviati da

Telegram;
•	 rispondere ad un messaggio

particolare con una citazione o
un messaggino romantico;

•	 stampare una citazione o un
messaggino romantico;

•	 gestire una lista di oggetti che
potrebbe corrispondere ad una
lista della spesa;

•	 consultare e stampare la stessa.

Scendendo in dettaglio, i coman-
di sono implementati analizzan-
do l’inizio del messaggio inviato,
ricercandovi le seguenti parole:

•	 stampa invia alla stampante il
resto del testo del messaggio;

•	 romantico preleva una frase
romantica da un database e la
invia come risposta;

•	 citazione preleva una citazio-
ne da un database e la invia
come risposta;

•	 stampa romantico preleva una
frase romantica da un databa-
se e la stampa;

•	 stampa citazione preleva una
citazione da un database e la
stampa;

•	 aggiungi aggiunge un oggetto
alla lista della spesa;

•	 rimuovi rimuove un oggetto
dalla lista della spesa;

•	 mostra lista invia come rispo-
sta il contenuto della lista della
spesa;

•	 stampa lista stampa la lista
della spesa;

•	 svuota lista svuota la lista
della spesa;

•	 help mostra l’elenco dei

comandi disponibili (questa
lista).

Ad esempio, inviando il messag-
gio ‘stampa Ci vediamo stasera?’
la frase ‘Ci vediamo stasera?’
verrà stampata immediatamente
e, nello stesso tempo, riceveremo
su Telegram un messaggio di
conferma.
Vediamo quindi le parti salienti
dell’applicazione. Innanzitutto,
abbiamo bisogno di una funzione
che gestisca l’evento proveniente
da Telegram (quella che nei due
piccoli esempi di prima si limita-
va a mostrare il messaggio sulla
seriale e/o reinviarlo al mittente
come conferma). In questo caso
le cose si complicano leggermen-
te, dovendo analizzare il testo del
messaggio per estrarne i coman-
di. Abbiamo poi bisogno della
lista di comandi, memorizzata

in qualche modo “comodo” e di
una serie di funzioni che gesti-
scano i comandi stessi.
Il modo più semplice per imple-
mentare la cosa è quello di una

“linked list”, ovvero una lista di
elementi collegati alla quale è
possibile aggiungere o togliere
(quest’ultima funzione qui non è
utilizzata) degli elementi. Gli ele-
menti stessi, poi, sono costituiti
dal testo del comando abbinato
alla funzione che lo gestisce.
Iniziamo con questi ultimi, di-
chiarati come nel Listato 4.
La typedef iniziale serve a for-
nire una sintassi abbreviata per
gestire le funzioni che esegui-
ranno i nostri comandi. In poche
parole, queste funzioni hanno
come parametri l’id, nome e
cognome del mittente ed il corpo
del messaggio senza il nome del
comando; ritornano un valore

Listato 3
// imposta il numero di messaggi precedenti da recuperare
// -1 per TUTTI (usare con cautela!), 0 per nessuno.
// dev’essere chiamata prima della begin()
FishGramClass &recoverOldMessages(uint32_t n = (uint32_t)-1);

Fig. 10 - Piedinatura
della Fishino Guppy.

12 Febbraio 2017 ~ Elettronica In

Elettronica In ~ Febbraio 2017 13

booleano in base all’esito del
comando stesso (valore qui non
usato, ma potrebbe servire per
comandi differenti).
La struct CommandElement rap-
presenta invece la descrizione del
comando vero e proprio, ovvero
il testo (name) ed il puntatore
alla funzione che lo gestisce
(handler). Nella struct (che è pra-
ticamente la stessa cosa di una
class, salvo qualche lieve diffe-
renza) abbiamo anche inserito un
costruttore che permette di ini-
zializzarla. La FLASH_HELPER è
una macro (#define) che dipende
dal controller usato; per gli 8 bit
viene tradotta in __FlashStrin-
gHelper, per poter utilizzare
le stringhe nella memoria flash
(e quindi risparmiare preziosa
RAM), mentre nei 32 bit viene
tradotta in una semplice char,
visto che per queste tipologie di
controller non c’è differenza tra
stringhe in RAM o nella Flash.
La lista dei comandi viene quindi
rappresentata in questo modo:

List<CommandElement> commandList;

Qui utilizziamo una template
scritta da noi per gestire una lista

di oggetti generici. Perché una
template (e soprattutto... cos’è
una template???), e perché non
utilizzarne una già fatta da altri?
Alla prima domanda e mezza si
può rispondere che una template
è quello che si chiama una classe
generica, ovvero può essere
utilizzata per gestire differenti
tipi di oggetti. Quindi, se volessi-
mo realizzare una lista di patate,
basterebbe scrivere:

List<Patate> listaPatate;

ed otterremmo quanto desidera-
to, senza dover scrivere una sola
riga di codice aggiuntivo. Allo
stesso modo, se desiderassimo
una lista di Rose, potremmo
scrivere:

List<Rose> listaRose;

Una bella differenza dal dover ri-
scrivere ogni volta tutto il codice
per gestire tipi di dati differenti!
La template List si trova nel file
List.h dentro alla cartella del
progetto; è probabile che in una
futura versione delle librerie
raccoglieremo un po’ di codice
riutilizzabile come questo in una
libreria apposita. Analizzando
il codice corrispondente, si nota
che il template fornisce funzio-
ni per aggiungere, eliminare e
percorrere tutti gli elementi della
lista; non si tratta di un codice
particolarmente complesso nè
performante, ma svolge egregia-
mente il suo compito.
Alla seconda domanda... non c’è
una risposta: è vero che esistono
in rete decine di implementazioni
di Liste, Array, eccetera; sempli-
cemente abbiamo preferito scri-
verne una limitata (e facilmente
comprensibile) adatta al nostro

Listato 4
typedef bool (*CommandHandler)(uint32_t, const char *, const char *, const char *);
struct CommandElement: public ListElement<CommandElement>
{
	 const FLASH_HELPER *name;
	 CommandHandler handler;
	 CommandElement(const FLASH_HELPER *_name, CommandHandler _handler):
name(_name), handler(_handler) {}
};

Listato 5
commandList.add(new CommandElement(F(“aggiungi”)		 , Cmd_AggiungiLista));
commandList.add(new CommandElement(F(“rimuovi”)		 , Cmd_RimuoviLista));
commandList.add(new CommandElement(F(“mostra lista”)	 , Cmd_MostraLista));
commandList.add(new CommandElement(F(“stampa lista”)	 , Cmd_StampaLista));
commandList.add(new CommandElement(F(“svuota lista”)	 , Cmd_SvuotaLista));
commandList.add(new CommandElement(F(“stampa romantico”)	 , Cmd_StampaRomantico));
commandList.add(new CommandElement(F(“romantico”)		 , Cmd_Romantico));
commandList.add(new CommandElement(F(“stampa citazione”)	 , Cmd_StampaCitazione));
commandList.add(new CommandElement(F(“citazione”)		 , Cmd_Citazione));
commandList.add(new CommandElement(F(“stampa”)		 , Cmd_Stampa));
commandList.add(new CommandElement(F(“help”)		 , Cmd_Help));

VIN

PRINTER

GND

5

6

7 V

Fig. 11 - Cablaggio
dell’elettronica.

12 Febbraio 2017 ~ Elettronica In

Elettronica In ~ Febbraio 2017 13

scopo, anche per motivi didattici.
Una volta dichiarata la lista di
comandi occorre riempirla, e
questo avviene nelle linee del
Listato 5. La funzione add ag-
giunge un nuovo (new) elemento
(CommandElement) inizializzan-
dolo con il nome del comando e
la funzione di gestione (handler)
corrispondente. Ad esempio, la
prima riga implementa il co-
mando “aggiungi” gestito dalla
funzione Cmd_AggiungiLista().
Torniamo ora al gestore degli
eventi di FishGram, che utilizza
il codice di Listato 6.
Questo non fa altro che percor-
rere tutta la lista di comandi,
confrontandoli con l’inizio del
messaggio ricevuto; quando tro-
va una corrispondenza termina
la ricerca ed esegue il comando
corrispondente.
Se non trova una corrispondenza
invia al mittente un messaggio di
errore (la penultima riga).
La funzione starts() richiamata
dall’handler è un piccolo helper
(funzione di utilità) che controlla
se un testo inizia con una stringa
prefissata, ed è definita poche
righe sopra (Listato 7).
Non ci resta che vedere una delle
funzioni di gestione dei comandi;
per semplicità vedremo quella
che implementa il comando

‘stampa’ (Listato 8).
Questa funzione non fa altro
che stampare, come richiesto, il
mesaggio (sendToPrint(str)) e
risponderci con un messaggio di
conferma, costruito per rispar-
miare ripetizioni con la helloMsg
(che crea una stringa costituita da

“Ciao <nome>, “, aggiungendovi
il testo “ho stampato il tuo mes-
saggio ‘”, il testo del messaggio
e la virgoletta di chiusura finale,
reinviandolo poi al mittente tra-
mite la FishGram.sendMessage().

CITAZIONI E LISTA DELLA SPESA
Per queste due funzionalità da-

remo solo una breve descrizione;
non si tratta di codice partico-
larmente complesso ma appe-
santirebbe comunque troppo
l’articolo. Il codice è comunque
ben commentato e scaricabile dal
nostro sito www.elettronicain.it e,
in seguito, verrà incluso tra gli
esempi nelle librerie di Fishino.
Le citazioni (e le frasi romanti-

che) vengono implementate per
forza di cose appoggiandoci ad
un server esterno, tramite un
programmino in php contenente
una serie di frasi preimpostate ed
un algoritmo per poterne genera-
re una casuale ad ogni accesso, a
meno di non richiederne una spe-
cifica. Ma perché un php esterno?
Non si potevano implementare

Listato 6
// fishgram event handler
bool FishGramHandler(uint32_t id, const char *firstName, const char *lastName, const char *message)
{
	 CommandElement *elem = commandList.head();
	 while(elem)
	 {
		 if(starts(message, elem->name))
		 {
			 message += strlen_P((const char *)elem->name);
			 while(*message && isspace(*message))
				 message++;
			 return elem->handler(id, firstName, lastName, message);
		 }
		 elem = elem->next();
	 }

	 // command not found
	 FishGram.sendMessage(id, F(“Comando sconosciuto - inviare ‘help’ per lista comandi”));
	 return false;
}

Listato 7
bool starts(const char *msg, const FLASH_HELPER *cmd)
{
	 char c;
	 uint16_t i = 0;
	 while((c = charAt(cmd, i++)) != 0)
		 if(toupper(*msg++) != toupper(c))
			 return false;
	 return true;
}

Listato 8
bool Cmd_Stampa(uint32_t id, const char *firstName, const char *lastName, const char *str)
{
	 // print the message
	 sendToPrint(str);

	 // send a confirmation back to bot
	 String ans = helloMsg(firstName, lastName);
	 ans += F(“ho stampato il tuo messaggio ‘”);
	 ans += str;
	 ans += “’”;
	 FishGram.sendMessage(id, ans.c_str());
	 return false;
}

14 Febbraio 2017 ~ Elettronica In

Elettronica In ~ Febbraio 2017 TM

direttamente sul Fishino, magari
con l’utilizzo di una scheda SD?
Si, ma non con le versioni UNO
e GUPPY che abbiamo scelto per
l’applicazione, soprattutto per
motivi di compattezza. Queste
infatti non hanno lo spazio di
memoria sufficiente per gestire
sia FishGram che la scheda SD.
Utilizzando lo (scarso) spazio
lasciato libero in Flash dall’appli-
cazione avremmo potuto mettere
insieme poche frasi, cosa che
avrebbe portato a ripetizioni nel
breve termine. Utilizzando una
Fishino Mega o, ancora meglio, la
nuova Fishino32 questi problemi
spariscono completamente ed è
possibile implementare in locale
anche un grosso database di
citazioni su scheda SD o anche
direttamente nella memoria
Flash del controller.
Tornando alle citazioni, la richie-
sta avviene, tramite protocollo
HTTP (per i limiti di Fishino
di non poter aprire più di una
connessione HTTPS alla volta)
tramite una semplice richiesta
GET ad una path situata sul sito
www.fishino.it. Il modulo PHP
risponde con una stringa di testo
semplice con questo formato:

ID, LEN, citazione

dove ID è un numero identifi-
cativo della citazione, per poter-
la “ripescare”, ad esempio, per
mandare al mittente la conferma
di quanto si è stampato; LEN è la
lunghezza del testo della citazio-
ne stessa, necessaria per poter
utilizzare le funzioni startMes-
sage() e annesse della libreria
FishGram (ricordate? Permettono

di inviare un messaggio anche
carattere per carattere, senza
quindi la necessità di doverlo
scaricare per intero sul Fishino).
Il codice di richiesta della citazio-
ne al server contenuto nei moduli
Cit.h e Cit.cpp, anch’essi reperi-
bili nella cartella dell’applicazio-
ne, ed è di facile comprensione
e ben commentato. Per quanto
riguarda la lista della spesa, in-
vece... abbiamo sfruttato ancora
una volta la nostra template List,
essendo questa perfetta per gesti-
re questo tipo di dati; la dichiara-
zione è riportata sul Listato 9.
Come si può vedere, abbiamo
prima definito una nuova struct
contenente il dato che ci interessa
(un semplice puntatore a carat-
tere, che conterrà una stringa di
testo allocata dinamicamente
tramite strdup()); la novità qui è
il distruttore (~ShoppingListEle-
ment()) che si occupa di liberare
la memoria dinamica quando
eliminiamo l’elemento.
La dichiarazione della lista è
quindi immediata, come si vede
dalla linea successiva alla struct,
ed il suo utilizzo identico a quel-
lo relativo alla lista di comandi.
In questo caso utilizziamo anche
la funzione remove() per elimina-
re, a richiesta, elementi dalla lista.
Per esempio, se vogliamo aggiun-
gere “Pasta” alla lista tramite
codice, possiamo scrivere:

shoppingList.add(new

ShoppingListElement(“Pasta”));

Come accennato, la nostra imple-
mentazione di List è ben lungi
dall’essere completa; manca, per
esempio, una funzione di ricerca,

che sarebbe utile ma che avreb-
be complicato il codice oppure
limitato la generalità dello stesso.
Per cercare un oggetto nella lista
dovremo quindi eseguirne una
scansione completa “a mano”,
come fa il gestore di eventi di
FishGram visto sopra.

L’ELETTRONICA
Il collegamento della stampante
è davvero semplicissimo (Fig.
11); bastano tre cavetti: uno da
collegare alla massa del Fishino,
uno alla linea D6 (il TX, ovvero
l’RX della stampante) ed uno
alla linea D5 (l’RX, ovvero il TX
della stampante). La stampantina
comunica tramite un semplice
protocollo seriale, per il quale
sfruttiamo una SoftwareSerial
tramite l’apposita libreria, ed
è gestita dalla libreria Adafru-
it_Thermal.
Bene, si conclude qui la descri-
zione della nostra Note Machine,
utilizzabile anche come spunto
per controlli molto diversi, quali
per esempio la gestione di luci,
allarmi ed altro. Prossimamente
presenteremo altre interessanti
applicazioni di Telegram.

Listato 9
// la lista della spesa
struct ShoppingListElement: public ListElement<ShoppingListElement>
{
	 char *item;
	 ShoppingListElement(const char *s) { item = strdup(s); }
	 virtual ~ShoppingListElement() { if(item) free(item); }
};
List<ShoppingListElement>shoppingList;

g

Tutti i componenti utilizza-
ti in questo progetto sono di
facile reperibilità. Il master
del circuito stampato può es-
sere scaricato dal sito della
rivista così come il firmware
utilizzato per programmare il
microcontrollore PIC16F88. Il
sensore ad infrarossi IR38DM
costa 2,50 Euro mentre l’inte-

Il materiale va richiesto a:
Futura Elettronica, Via Adige 11,

21013 Gallarate (VA)
Tel: 0331-799775

http://www.futurashop.it

per il MATERIALE

Sostituire
testo

