icordate il progetto
Fish’'n Tweets, che
permetteva di controlla-
re gli I/O di Fishino tra-
mite dei tweet? Ebbene,
si e trattato del nostro
primo esperimento di
interazione tra Fishino
e il mondo dei Social.
L’applicativo & tutt’ora
valido ma, a causa della
“lentezza” di Twitter, a
volte il tempo intercorso
tra un comando e la sua
esecuzione puo supera-
re i 20 secondi.
Twitter inoltre e
piuttosto complesso
da gestire, soprattutto
nella fase iniziale di
creazione delle chiavi
di accesso, dell’utente
“robot”, eccetera.
Visto che volevamo
tornare sull’argomento
e che San Valentino
incombe, abbiamo
pensato di prendere i
classici “due piccioni
con una fava” realiz-
zando un’applicazio-
ne, -stavolta basata
sul servizio di instant
messaging Telegram-
che puo essere un
modo suggestivo per
mandare messaggi per-
sonalizzati alla propria
amata, stampati da una
micro-stampante.
I messaggi possono
essere sia personalizzati
che scelti da un data-
base predisposto su un
server. L’applicazione

qui proposta non e
limitata al giorno degli
innamorati ma trova
impiego nella realta
quotidiana, perché
implementa anche una
funzione di gestione
della “lista della spesa”,
che permette di memo-
rizzare una sequenza
di prodotti, inviandone
il nome tramite un
messaggino Telegram
in qualsiasi momento e
permettendo di con-
sultarla e/o stamparla,
sempre da remoto. Cio
trova applicazione ad
esempio in un ristoran-

te, dove I’avventore puo

fare il proprio ordine,
che verra stampato alla
cassa in automatico.
L’applicazione ci per-
mette di introdurre una
libreria di interfaccia
con Telegram apposita-
mente sviluppata, che
ci consentira non solo
di controllare Fishino
da qualsiasi parte del
mondo, ma anche di
leggerne gli ingressi
e, se vogliamo, di farci
avvisare in caso si veri-
fichino eventi partico-
lari, sempre tramite un
messaggio Telegram.
La libreria e dotata dei
necessari strumenti di
“sicurezza”: e possibi-
le lasciare 'accesso a
tutti, vincolarlo solo ad
utenti specifici oppure,
se necessario, lasciar-

lo aperto a tutti salvo
alcuni utenti “disturba-
tori”. Come vedrete la

libreria si presenta in
modo piuttosto modu-
lare e semplice da usare,
nascondendo all'utente
i dettagli tecnici dell’im-
plementazione e della
comunicazione con
Fishino. Questi applica-
tivi possono funzionare
anche con una scheda
Arduino dotata di shield
WiFi, tuttavia dipende
dallo shield. Quello piu
comunemente disponi-

bile (ed economico) non
supporta la connessione
sicura (SSL/HTTPS),
quindi non e utilizzabi-
le per I'interfacciamento
con i social che Ia ri-
chiedono, come Twitter,
Telegram ed altri.
Disponendo, invece, di
uno shield piu1 recente,
e possibile adattare la
libreria ad esso.

TELEGRAM E | SUOI “BOT”
Cos’e un “bot”? In
sintesi, & un account
“virtuale” di Telegram,

)
2 Febbraio 2017 ~ ELETTRONICA IN jj

NOTES
MACHINE

CON FISHINO

di MASSIMO DEL FEDELE

Appoggiandoci a un bot, stampiamo
con una stampantina termica remota
messaggi composti su Telegram. Una
soluzione dalle mille applicazioni,
utilizzabile per stampare liste e ordini
in un locale e, perché no, per mandare
messaggi stampati alla propria “bella”
il giorno di San Valentino e non solo.

per creare il quale non
servono numeri di
telefono, dati personali,
eccetera. Questo tipo

di account deve essere
creato da un account

“reale”; per il resto, puo
funzionare come un
utente simulato, riceve-
re ed inviare messaggi,
ed altro.

A noi interessa qualcosa
che possa interagire sia
con il nostro Fishino che
con uno o piu utenti;
creeremo quindi un bot
che verra controllato

da Fishino e che sara

in grado di rispondere

alle nostre richieste e/o

inviarci messaggi.

I bot & quindi un robot,

programmabile per

eseguire determinate
azioni. I bot:

* non mostrano il loro
stato (online/offline);
sono sempre attivi
e “vedono” all'istan-
te (o quasi) i nostri
messaggi;

* hanno una memoria
limitata; i vecchi mes-
saggi possono sparire

Applicazioni

dal server poco dopo
essere stati processa-
ti;

® non possono iniziare
una conversazio-
ne ma rispondono
se interessati; per
comunicare con un
bot occorre aggiun-
gerlo ad un gruppo
oppure inviargli un
messaggio iniziale;

* hanno un “nome
utente” che finisce
sempre in “bot”; per
esempio, TriviaBot,
Fishino_bot;

e anche se aggiunti a
un gruppo, non rice-
vono tutti i messaggi
se non impostati allo
scopo.

CREIAMO IL NOSTRO BOT
Iniziamo subito con la
creazione del bot che ci
servira per interagire
con Fishino.

Per prima cosa, se non
l’avete ancora fatto,
occorre scaricare ed in-
stallare Telegram; nelle
immagini in queste
pagine vedete l'instal-
lazione su un desktop
Linux (I’abbiamo fatto
per catturare le scher-
mate), ma normalmente
I'applicazione e installa-
ta su uno smartphone.
Nell’installazione vi
verra chiesto di confer-
mare il vostro numero
di telefono e/o un
codice di sicurezza, a

seconda della piattafor-
ma. Una volta installato
ed eseguito, vi troverete
di fronte alla schermata
di Fig. 1. Per creare il
bot bisogna ricorre-

re al “padre di tutti i
bot”, ovvero all’utente
BotFather: e sufficiente
digitarne il nome nella

casella di ricerca (Fig. 2).

Vi apparira la schermata
introduttiva di BotFa-
ther; cliccate su Start
(in basso) per avviare il
bot; BotFather rispon-
dera con un messaggio
esplicativo contenente
una lista dei principali
comandi disponibili
(Fig. 3).

Siccome vogliamo
creare un nostro bot,
clicchiamo sul comando
/newbot (Fig. 4).
BotFather ci chiede di
dare un nome al nostro
bot; scegliamo un nome
a caso, per esempio
Pippo (Fig. 5).

Ci viene quindi chiesto
uno ‘user name’ per il
nostro bot; questo deve
per forza essere unico

e terminare in ‘bot’; nel
caso scegliessimo uno
username gia occupato
BotFather ci avvisera e
ci imporra di cambiarlo.
In questo caso PippoBot
e gia in uso (ovviamen-
te!l), quindi scegliere-
mo PippoRobot che
casualmente e libero;
BotFather ci avvisera

jﬁ ELETTRONICR IN ~ Febbraio 2017

3

Your chats will be here

Mew contact

dell’avvenuta creazione del
nostro bot e ci dara le istruzioni
per utilizzarlo da remoto (Fig. 6).
Come potete notare, il nostro bot
¢ accessibile tramite 1'indirizzo
Telegram:

telegram.me/PippoRobot

e per controllarlo & necessario
possedere il token di sicurezza
fornito da BotFather:

Use this token to access the HTTP
API:

nnnnnnnnn: XX XXXXX-
YYYYYYY
/7777777777777 77777

11 token (qui oscurato) e indi-
spensabile per garantire la sicu-
rezza che nessuno possa “ma-
nomettere” il nostro bot. Questa
token andra inserita nel codice
del nostro sketch, come vedremo
in seguito, quindi prendetene
nota e, soprattutto, mantenetela
ben segreta visto che chiunque
ne viene in possesso ¢ in grado di
fare qualsiasi cosa con il nostro
bot, compreso cancellarlo.
Clicchiamo ora sul link telegram.
me/PippoRobot (Fig. 7) e successi-
vamente sul comando Start, che
avviera il nostro bot inviandogli
un messaggio iniziale (Fig. 8).
Ecco fatto! Abbiamo creato il
nostro primo bot di Telegram!

LA LIBRERIA FISHGRAM
Una volta creato il nostro bel-

Please select a chat to start messaging

lissimo bot occorre, perché sia
utile, potergli inviare e ricevere
messaggi, oltre che dall’app Tele-
gram, anche attraverso il nostro
Fishino.

Per interagire con il bot Telegram
utilizza il protocollo HTTPS

con un formato ben specifico; in
particolare, i comandi possono
essere impartiti tramite diretti-
ve HTTP GET e POST, e negli
headers http inviati deve sempre
essere presente la nostra token.
Per esempio, una richiesta di tipo
‘getUpdates’, che ci permette di

Fig. 1 - Installazione di Telegram.

richiedere i messaggi ricevuti dal

bot ha il formato seguente:

GET /botTOKEN/getUpdates?offset=

nnn&timeout=4&limit=1&allowed_

updates=messages HTTP/1.1

User-Agent: FishGram 1.0.0

Host: api.telegram.org

In questo formato di richiesta:

¢ TOKEN e la nostra token di
accesso, vista al paragrafo
precedente;

¢ offset=nnnn rappresenta il
primo ID di messaggio cui
siamo interessati;

* limit=1 indica a Telegram di
fornirci un solo messaggio
per richiesta (Telegram puo
fornire pit messaggi per ogni
richiesta di aggiornamento);

¢ allowed_updates=messages
indica che siamo interessati
solo ai messaggi e non, per
esempio, ai file audio e/o
immagini.

Possiamo provare il comando

/O BotFather 2
bot

Global search results

BotFather %

®BotFather

No messages found

BotFather

What can this bot do?

BotFather is the one bot to rule them all. Use it to create new bot
accounts and manage your existing bots.

About Telegram bots:
https:/fcore.telegram.org/bots
Bot APl manual:

https:/fcore. telegram.org/bots/apl

~ Contact @BorSupport if you have questions about the Bot API.

Fig. 2 - Ricerca di BotFather.

& Febbraio 2017 ~ ELETTRONICA IN m

direttamente sul browser, im-
mettendo nella casella dell’indi-
rizzo il testo seguente (sostituite
TOKEN con il vostro token di
accesso):

https://api.telegram.org/bot TOKEN/
getUpdates?offset=0&timeout=4&1i
mit=1&allowed_updates=messages

Scrivete, ovviamente, tutto su
una sola riga. Telegram risponde-
ra con un testo in formato JSON
come il seguente:

{“ok”:true, "result”: [{“update_
1d”:904783368,
“message”:{“message_id”:2,”f
rom”:{“id” :nnnnnnnnn, “first
name”:”Massimo”,”last_name”:”Del Fe
dele”},”chat”:{“id” :nnnnnnnnn, ”fir
st_name”:”Massimo”,”last _name”:”Del

won

Fedele”,”type”:”private”},”date”:14

83380231, “text”:”ciao Pippo”}}]}

Come si puo notare, il testo
di risposta contiene parecchie

&2 BotFather

4

Global search results

BotFather &
@BotFathear

e

Mo messages found

BotFather

Telegram

FAELAUSULLEAL = LGRS UL audus nnu
/setuserpic - change bot profile photo
/setcommands - change the list of commands
/deletebot - delete a bot

Bot Settings

/token - generate authorization token

/revoke - revoke bot access token

/setinline - toggle inline mode

/setinlinegeo - toggle inline location requests
/setinlinefeedback - change inline feedback settings
/setjoingroups - can your bot be added to groups?
fsetprivacy - toggle privacy mode In groups

/newgame - create a new game
/listgames - get a list of your games
feditgame - edit a game

/deletegame - delete an existing game

Alright, a new bot. How are we going to call it? Please choose a
name for your bot.

L. P

Fig. 4 - Creazione del nostro Bot.

informazioni, tra cui il mittente
del messaggio, 1'id del messaggio
(tramite il quale, per esempio, in
una chiamata successiva invian-
do come offset=id+1 potremo

BotFather

bot

/2 BotFather

Global search results

No messages found

Edit Bots

Bot Settings

Telegram

the Bot AP, please see the manual.
You can control me by sending these commands:

/newbot - create a new bot
/mybots - edit your bots [beta)
/mygames - edit your games [beta)

/setname - change a bot's name
/setdescription - change bot description
fsetabouttext - change bot about info
/setuserpic - change bot profile photo
/setcommands - change the list of commands
/deletebot - delete a bot

/token - generate authorization token
/revoke - revoke bot access token
fsetinline - toggle Inline made

o wmmelo bl Lol

| fstart g7
oS RHECAANE

're new to

Fig. 3 - Risposta di BotFather.

richiedere i messaggi a partire
dal successivo), eccetera.

E facile capire che, senza un’ap-
posita libreria software, il fun-
zionamento della cosa risulta
piuttosto complesso. Se I'invio
della richiesta e relativamente
semplice (basta utilizzare un
oggetto FishinoClient, collegarlo
all’indirizzo richiesto, ed inviare
una serie di stringhe di caratteri),
I’analisi del JSON restituito non

e altrettanto banale, soprattutto

a causa delle risorse limitate del
nostro Fishino, specialmente

per quanto riguarda la memoria
RAM.

Per questo ci viene in aiuto la
libreria JSONStreamingParser,
scritta per il progetto Fish'n Twe-
ets, che e in grado di “digerire”
I'output di Telegram, carattere
per carattere, senza bisogno di
memorizzare nulla, e di spezzet-
tarlo in tanti elementi del tipo
nome: valore e, ad ogni elemento
ricevuto, chiamare una funzione
da noi definita.

Siccome spiegare il funzionamen-
to della libreria richiederebbe
meta delle pagine di questo fasci-

E
|

=

L2

|
.

ELETTRONICR IN ~ Febbraio 2017 S

12 BotFather X

BotFather

baot

Global search results

tFather &

No messages found

Games

name for your bot.

FUURETT = BETIEIaUE U W LU T wuneEln
frevoke - revoke bot access token
fsetinline - toggle inline mode
feetinlinegeo - toggle inline location requests
fsetinlinefeedback - change inline feedback settings
/setjoingroups - can your bot be added to groups?
fsetprivacy - toggle privacy mode in groups

.I"I']EWSBI'I'IQ = Create a new game
/flistgames - get a list of your games
feditgame - edit a game
/deletegame - delete an existing game

Alright, a new bot. How are we going to call it? Please choose a

Good. Now let's choose a username for your bat. It must end in
“bot". Like this, for example: TetrisBot or tetris_bot. g

Fig. 5 - Assegnazione del nome al Bot.

quali & costituito dalla funzione
di gestione degli eventi (di cui
parleremo tra poco):

bool FishGramHandler (uint32 t id,

const char *firstName, const char *la-

stName, const char *message)

Il secondo e “inizializzazione di
FishGram”:

// start FishGram
FishGram.

event (FishGramHandler) ;
FishGram.begin (F (MY TELE-

GRAM_TOKEN)) ;

E il terzo e la chiamata nel loop:

colo, se non oltre, partiremo da
un piccolo sketch di esempio per
mostrarne 1'utilizzo; chi volesse
approfondire trovera il codice
della libreria stessa molto com-
mentato e quindi relativamente
facile da capire. Affronteremo co-
munque, durante la spiegazione
dell’utilizzo, di alcune peculiarita
e scelte apparentemente strane
che abbiamo effettuato nella
scrittura della stessa.

UN PRIMO SKETCH,

SEMPLICE SEMPLICE

Iniziamo... dall’inizio! Proviamo
a visualizzare i messaggi che
vengono inviati al nostro bot sul
monitor seriale; per far questo lo
sketch e davvero semplicissimo.
Per questo (primo) esempio, inse-
riremo il codice completo (com-
presa l'inizializzazione di Fishino,
la connessione al router WiFi,
eccetera, in modo da permettere
a chiunque di collaudarlo “al
volo” semplicemente copiando

il codice nell’IDE; per i prossimi
esempi eviteremo tutto questo ed
inseriremo solo il codice specifico
di FishGram (Listato 1).

FishGram.loop () ;

Semplice, vero? Ma come fun-
ziona? Ebbene, a differenza della
maggior parte degli sketch cui
siamo abituati, la libreria Fi-
shGram funziona per eventi; una
volta inizializzata, resta quasi
invisibile e, soprattutto, occupa

Come potete vedere, il grosso
dello sketch e l'inizializzazione
di Fishino, il collegamento al rou-
ter, eccetera. Per quanto riguarda
FishGram in pratica troviamo
rilevanti tre punti, il primo dei

Telegram

BotFather

bot

0 BotFather X

Global search results Good. Now let's choose a username for your bot. It must end in

“bot”. Like this, for example: TetrisBot or tetris_bot.

BotFather %
@BotFather

PippoBet 500 o

No messages found
Sorry, this username Is already taken. Please try something

different. 8:2
PippoRobot .o

Done! Congratulations on your new bot. You will find it at
telegram.me/PippoRobot. You can now add a description, about
section and profile picture for your bot, see /help for a list of
commands. By the way, when you've finished creating your cool
bot, ping our Bot Support if you want a better username for it. Just
make sure the bot is fully operational before you do this.

Use this token to access the HTTP API:
=

“ig—

For a description of the Bot AP, see this page:
https://core.telegram.org/bots/api

Fig. 6 - Completamento del bot.

6 Febbraio 2017 ~ ELETTRONICA IN

=
e
=i

Fig. 7 - Avvio del bot.

pochissime risorse di calcolo e di
memoria. L'importante e che la
chiamata FishGram. loop () ;
dentro al loop venga eseguita
spesso.

Questa chiamata, che normal-
mente dura poche decine di mi-
crosecondi, consente alla libreria
di gestire un timer interno e di ri-
chiamare, ad intervalli prefissati,
il server di Telegram e richiedere
eventuali aggiornamenti.

Se questi aggiornamenti non
sono presenti, torna senza fare
nulla; se invece c’e qualche
novita la raccoglie, organizza

e chiama la funzione evento
FishGramHandler () passan-
dole come parametri l'id, il nome
ed il cognome del mittente ed il
testo del messaggio.

Con questa funzione possiamo
quindi stampare sulla porta se-
riale quello che riceviamo.

Le due chiamate nel setup, ovve-
rola FishGram.event () ela
FishGram.begin (), servono
rispettivamente per collegare la

/0 BotFather X

Glabal search results

BotFather &
A @BotFather

No messages found

@ Write a message..

Telegram =

January 2

start 1546

nostra funzione di gestione degli
eventi e per dire a FishGram chi
e il nostro bot tramite il token.
Non saremo quindi noi, dentro
allo sketch, a doverci ricordare di
chiedere a FishGram gli aggior-

) BotFather X

&

Telegram

Global search results

BotFather &
®BotFather

No messages found

Start

Fig. 8 - Messaggio iniziale del bot.

namenti “ogni tanto”, ma con
questo meccanismo sara la stessa
libreria ad avvisarci se e solo se
arriva qualcosa di interessante
dal nostro bot.

Quali sono gli svantaggi di

un simile metodo? In pra-

tica ce n’e solo uno: se la
FishGram.loop () non viene
eseguita abbastanza spesso il
programma risponde male. Per
esempio, se infilassimo una
delay(1000) dentro alla loop(), la
libreria riuscirebbe ad elaborare
solo un carattere ricevuto ogni
secondo, quindi passerebbero
giornate prima di avere una
risposta, o, pi1 probabilmente, il
server di Telegram chiuderebbe
la connessione prima.

Quindi e ben possibile (anzi, lo
scopo di questo sistema e proprio
quello!) far eseguire al nostro
Fishino qualcos’altro, mentre e
in attesa di messaggi, ma questo
qualcos’altro non deve ne bloc-
care 1’esecuzione del loop() ne
impiegare troppo tempo. Quindi,
niente delay(), niente while() con
durate lunghe e/o attesa di pul-
santi da premere, eccetera. Tutto

m ELETTRONICR IN ~ Febbraio 2017 7

#include <Fishino.h>

#include <JSONStreamingParser.h>
#include <FishGram.h>

#include <SPI.h>

#define MY SSID
#define MY PASS

“IL_MIO_SSID”
“LA MIA PASSWORD”

// se volete un IP dinamico basta commentare/eliminare le 3 righe seguenti
#define IPADDR 192, 168, 1, 251

#define GATEWAY 192,168, 1,1

#define NETMASK 255, 255, 255, 0

#define MY TELEGRAM TOKEN “LA_TOKEN DEL_MIO BOT_ TELEGRAM”

#ifdef IPADDR
IPAddress ip (IPADDR) ;
#ifdef GATEWAY
IPAddress gw (GATEWAY) ;
#else
IPAddress gw(ip[0], ip[1], ip([2], 1);
#endif
#ifdef NETMASK
IPAddress nm (NETMASK) ;

#else
IPAddress nm (255, 255, 255, 0);
#endif
#endif
// fishgram event handler -- just display message on serial port

bool FishGramHandler (uint32 t id, const char *firstName, const char *lastName, const char *message
{
Serial << F(“Ho ricevuto un messaggio da ‘'”) <<firstName << “’'\n”;
Serial << F(“I1l messaggio dice: '”) <<message << “'\n”;
return true;

}

void setup (void)

{
Serial.begin(115200) ;
while (!Serial)

;

while (!Fishino.reset())
Serial << F(“Fishino RESET FAILED, RETRYING...\n”);
Serial << F(“Fishino WiFi RESET OK\n”);

Fishino.setMode (STATION_MODE) ;
Fishino.setPhyMode (PHY MODE 11G);

Serial << F(“Connecting to AP...”);
while (!Fishino.begin (MY _SSID, MY PASS))
{

Serial << ™“.”;

delay(2000) ;
}

Serial << “OK\n”;

#ifdef IPADDR
Fishino.config (ip, gw, nm) ;

#else
Fishino.staStartDHCP () ;
#endif
Serial << F(“Waiting for IP...”);
while(Fishino.status () !=STATION_GOT_IP)
{
Serial << ™.”;
delay(500);

}

Serial << F (“OK\n”) ;

// start FishGram

FishGram.event (FishGramHandler) ;

FishGram.begin (F (MY TELEGRAM TOKEN)) ;
}

void loop (void)
{

FishGram.loop () ;
}

dev’essere eseguito senza blocca-
re il loop, quindi con millis() per
iritardi e controlli “volanti” per
eventuali pulsanti da rilevare.
Esistono alternative ma vanifi-
cano in parte i vantaggi dell’ap-
proccio; ad esempio, se vogliamo
attendere che un I/O vada a
livello HIGH, invece di fare:

while (!digitalRead(5))

possiamo scrivere:

while (!digitalRead(5))

FishGram.loop () ;

In modo che FishGram continui
ad essere richiamata nell’atte-
sa. Allo stesso modo, invece di
utilizzare:

delay(1000);

dovremo procedere con 1'utilizzo
della millis() in questo modo:
uint32 ttim=millis() +1000;
while(millis () <tim)

FishGram.loop () ;

Ma e possibile aggiungere alla
libreria una funzione del tipo
seguente?

FishGram.aspettaMessaggio ()

Certamente si... ma se il messag-
gio non arriva, lo sketch rimane
bloccato all’infinito oppure per
un tempo prefissato senza co-
mungque poter fare altro, quindi
abbiamo appositamente evitato
di introdurla.

Sul monitor seriale verra visua-
lizzato qualcosa di simile:

Fishino WiFi RESET OK
Connecting to AP...OK

Waiting for IP........ OK

Ho ricevuto un messaggio da ‘Mas-

simo’

8 Febbraio 2017 ~ ELETTRONICRIN ' —

I1 messaggio dice: ‘Ciao Pippo,

come stai?’

INVIARE UN MESSAGGIO
DA FISHINO A UN UTENTE
Se ricordate, nel paragrafo
sulle differenze tra un bot ed un
umano era specificato un punto
apparentemente poco importante
ma che invece ¢ fondamentale:
un bot non pud iniziare una
conversazione. Non possiamo
quindi dire al nostro Fishino
“cerca Giuseppe e spediscigli un
messaggio”. Questa e stata una
scelta ben precisa di chi ha svi-
luppato le API di Telegram, per
impedire un uso improprio dei
bot. Come potete ben immagina-
re, se ci fosse questa possibilita
sarebbe semplicissimo realizzare
uno spam-bot in grado di inviare
migliaia di messaggi indeside-
rati a chiunque! Come possiamo
fare, quindi? Semplicemente, una
volta inviato almeno un messag-
gio al nostro bot, questo avra a
disposizione l'id della chat (che
poi e anche 1'id di chi ha invia-
to il messaggio) e potra quindi
rispondere a questo utente e
ad altri eventuali che I’hanno
contattato. Vediamo quindi una

Il sistema in versione San
Valentino: la stampante é
montata in un quadro in tema.

La stampante termica

Per stampare i nostri messaggi inviati

da Telegram ci siamo avvalsi di una pic-
cola stampante alfanumerica (comun-
que stampa anche i caratteri del cinese)
a carta termica facilmente reperibile

in commercio e negli store on-line per
maker, come Adafruit e Sparkfun.

La stampantina é del tipo a 20 colonne

e stampa su rotolo di carta termica da
57,5 £0,5 mm e si interfaccia tramite
una connessione seriale a livello TTL. Di
seguito ne elenchiamo le caratteristiche.
e tensione di alimentazione: 5+9 Vcc;
*assorbimento max: 1,5 A;

e velocita di stampa: 50+80 mm/s

e risoluzione: 8 pixel/mm, 384 pixel/linea
* larghezza effettiva di stampa: 48mm

e set caratteri: ASCII,GB2312-80 (cinese);
e font stampa: ANK:5x7, cinese: 12x24,24x24;
e protocol: TTL Serial, 19.200 baud;

e dimensioni (LxPxH): 111x65x57 mm;

e temperatura di esercizio: 5°+ 50°C.

La stampante € la classica termica simile a molti modelli esistenti da anni,
perd nasce -guardacaso- per il mondo Arduino; allo scopo viene fornita con
a corredo 'apposita libreria firmware. Nello specifico, nel nostro sketch per
Fishino abbiamo integrato e utilizzato la stessa libreria fornita da Adafruit.

piccola modifica allo sketch,

che ci permette di ottenere un
feedback da parte di FishGram
sul nostro telefonino; per far
questo e sufficiente modificare la
funzione di gestione degli eventi
come nel Listato 2. E, al prossimo
messaggio inviato, il nostro bot,
oltre a mostrarci I'output sul mo-
nitor seriale, ci rispondera come
mostrato in Fig. 9.

La funzione FishGram.sendMes-
sage(), non dovendo attendere al-
cunché, si comporta come siamo
abituati: viene richiamata dove
vogliamo, esegue il suo compito
e poi ci lascia proseguire.

I primo parametro, id, e I'id
dell’utente a cui si vuole inviare
il messaggio; il secondo e il mes-
saggio vero e proprio.

LA LIBRERIA IN DETTAGLIO
Come avete visto nei due esempi
precedenti, la libreria e piuttosto
semplice; contiene comunque
altre utili funzioni che vediamo

qui di seguito. La prima e:

// end - termina la libreria
//FishGram

bool end (void) ;

e in pratica non serve mai, a
meno di non utilizzare FishGram
sporadicamente e voler liberare
tutta la memoria che occupa.

// cancella i dati locali

FishGramClass &clear (void) ;

in pratica non e indispensabi-
le; libera la memoria utilizzata
da FishGram fino al prossimo
evento.

// abilita/disabilita la lista di

//utenti ammessi

FishGramClass &restrict (bool b=
true);
FishGramClass &noRestrict (void) {

return restrict (false); }

queste ultime due funzioni

ELETTRONICA IN ~ Febbraio 2017 9

Telegram = E1

sono utilissime per eseguire un Ty i . MaxsS.Valentino 5 &
bot o

controllo su chi puo mandare
messaggi al nostro bot; se attiva-
ta con restrict() la funzione scarta
automaticamente tutti i messaggi
provenienti da id non contenuti
nella lista al punto seguente.

Max 5.Valentino 20:43

Ciao, M o, ho ricevuto il tuo...

Pippo v 19:03
You: ciao Pippo

BotFather &

Done! Congratulations on your ...

Ll
// aggiunge un ID utente alla lista

//di utenti ammessi

FishGramClass &allow(uint32_ t id);

questa funzione permette di
aggiungere un id utente alla lista

degli utenti ammessi; se la fun- Fig. 9
zione viene abilitata con restrict(), Risposta
solo gli utenti presenti in questa del bot.
lista vedranno accolti i loro mes-

saggi dal bot.

5:’) Write a message..

// aggiunge un ID utente alla lista
//di utenti bloccati saggi precedenti:
FishGramClass &block (uint32_ t id);
// imposta la funzione di gestione
Nel Listato 3 invece vediamo la //degli eventi
lista degli utenti bloccati; qualsia- rishGramClass sevent (FishGramBvent
siid presente in questa lista viene <) ;
considerato come spam e quindi

ignorato. All’avvio, di default Questa funzione installa il
FishGram legge 1'ultimo mes- gestore di eventi, come visto in
saggio disponibile, lo scarta ed precedenza:

attende nuovi messaggi; a volte &

desiderabile leggere anche mes- // invia un messaggio ad un ID
saggi precedenti all’avvio, cosa //specifico

ottenibile con questa funzione. Se bool sendiessage (uint3z_t const &id,
introduciamo recoverOldMes- const char *msg) ;

sages(10), ad esempio, all’avvio, bool sendMessage (uint32 t const &id,
FishGram recuperera i 10 mes- const _ FlashStringHelper *msg) ;

Listato 2

// fishgram event handler -- display message on serial port and give feedback to sender
bool FishGramHandler (uint32_t id, const char *firstName, const char *lastName, const char *message)
{

Serial << F(“Ho ricevuto un messaggio da ‘”) <<firstName << “’\n”;

Serial << F(“I1 messaggio dice: '”) <<message << “’\n”;

Strings;

s ="“Ciao, “;

s +=firstName;

s+=", ho ricevuto il tuo messaggio '”;
s +=message;

SH=Nro;

FishGram.sendMessage (id, s.c_str());
return true;

Queste due funzioni permettono
di inviare un messaggio tramite
FishGram a un ID specifico:

// invia un messaggio ad un ID spe-
cifico pezzo per pezzo

bool startMessage (uint32 t const &id,
uintlé t len);

bool contMessage (const char *msg) ;
bool contMessage (const FlashStrin-
gHelper *msg) ;

bool contMessage (char c) ;

bool endMessage (void) ;

queste cinque funzioni permetto-
no di inviare un messaggio pezzo
per pezzo, quindi comode se la
memoria RAM & scarsa. L'unico
“inghippo” e che & necessario
conoscere a priori la lunghezza
complessiva del messaggio, da
passare come parametro alla
startMessage(). Il messaggio puo
poi essere inviato tramite varie
chiamate alla contMessage(), e
terminato con la endMessage().

LA NOTE MACHINE

Dopo aver esaminato la libreria
FishGram in dettaglio possiamo
vederne un’applicazione un po’

10 Febbraio 2017 ~ ELETTRONICA IN 5

pilt complessa. In principio le

cose sono abbastanza semplici:

basta “trasformare” i messaggi

in comandi per il nostro Fishino,

eseguire questi comandi ed invia-
re un’eventuale risposta/confer-
ma al mittente. Come dicevamo
nell’introduzione, abbiamo pen-
sato di implementare un sistema

che permetta di:

® stampare messaggi inviati da
Telegram;

¢ rispondere ad un messaggio
particolare con una citazione o
un messaggino romantico;

¢ stampare una citazione o un
messaggino romantico;

* gestire una lista di oggetti che
potrebbe corrispondere ad una
lista della spesa;

® consultare e stampare la stessa.

Scendendo in dettaglio, i coman-
di sono implementati analizzan-

do I'inizio del messaggio inviato,
ricercandovi le seguenti parole:

¢ stampa invia alla stampante il
resto del testo del messaggio;

¢ romantico preleva una frase
romantica da un database e la
invia come risposta;

e citazione preleva una citazio-
ne da un database e la invia
come risposta;

* stampa romantico preleva una
frase romantica da un databa-
se e la stampa;

* stampa citazione preleva una
citazione da un database e la
stampa;

* aggiungi aggiunge un oggetto
alla lista della spesa;

* rimuovi rimuove un oggetto
dalla lista della spesa;

* mostra lista invia come rispo-
sta il contenuto della lista della
spesa;

e stampa lista stampa la lista
della spesa;

* svuota lista svuota la lista
della spesa;

* help mostra I'elenco dei

[Espsel]

..

// imposta il numero di messaggi precedenti da recuperare

// -1 per TUTTI

(usare con cautela!),

0 per nessuno.

// dev’essere chiamata prima della begin()
FishGramClass &recoverOldMessages (uint32_t n= (uint32_t)-1);

comandi disponibili (questa
lista).

Ad esempio, inviando il messag-
gio ‘stampa Ci vediamo stasera?’
la frase ‘Ci vediamo stasera?’
verra stampata immediatamente
e, nello stesso tempo, riceveremo
su Telegram un messaggio di
conferma.

Vediamo quindi le parti salienti
dell’applicazione. Innanzitutto,
abbiamo bisogno di una funzione
che gestisca I'evento proveniente
da Telegram (quella che nei due
piccoli esempi di prima si limita-
va a mostrare il messaggio sulla
seriale e/o reinviarlo al mittente
come conferma). In questo caso
le cose si complicano leggermen-
te, dovendo analizzare il testo del
messaggio per estrarne i coman-
di. Abbiamo poi bisogno della
lista di comandi, memorizzata

Fig. 10 - Piedinatura
della Fishino Guppy.

Absolute MAX per pin 28ma
recormended 18ma

® Absolute MAX 288mA
for entire package

peoar| TXD | POT EEV-

rcovis | INTE.
OC28 reovrss INT
XOK rcvio) T@
0caB coen | T1 /L PDS
O0CBA | revr2z (ATNG
reovr23 AINT
ICP1 reve [CLKDY
PeIvT1 | IOCLA
55 rcoviz (OCIB
MOST reovra 1 OC2
MISO | remvrs

Spsel!

in qualche modo “comodo” e di
una serie di funzioni che gesti-
scano i comandi stessi.

Il modo piut semplice per imple-
mentare la cosa e quello di una
“linked list”, ovvero una lista di
elementi collegati alla quale e
possibile aggiungere o togliere
(quest’ultima funzione qui non e
utilizzata) degli elementi. Gli ele-
menti stessi, poi, sono costituiti
dal testo del comando abbinato
alla funzione che lo gestisce.
Iniziamo con questi ultimi, di-
chiarati come nel Listato 4.

La typedef iniziale serve a for-
nire una sintassi abbreviata per
gestire le funzioni che esegui-
ranno i nostri comandi. In poche
parole, queste funzioni hanno
come parametri Iid, nome e
cognome del mittente ed il corpo
del messaggio senza il nome del
comando; ritornano un valore

oM
£E] PG5 | RESET o
I8
£T) BDEE "~

pevr3 (S| SCL
oo DG SDA
ey e
PETNTIE | >
rovrs | (DG
reavrs | (EGE

— 4 PB5 | envrs || scK T

ELETTRONICA IN ~ Febbraio 2017 11

JEEY The output from 3.3V Regulator
ngsolu:e MAX a@en%!\

T e input wvoltage to the
board when it is running from
external power, Not USE bus power,

6] 1=
NEREE
L

3R

n

F.l\
b W

m Analog exclusively Pins
-

typedef bool (*CommandHandler) (uint32_t, const char *, const char *, const char *) ;
struct CommandElement: public ListElement<CommandElement>

{
const FLASH HELPER *name;
CommandHandler handler;

CommandElement (const FLASH HELPER * name, CommandHandler handler):

name (_name) , handler (_handler) {}

}i

| Listato ™R

R

booleano in base all’esito del
comando stesso (valore qui non
usato, ma potrebbe servire per
comandi differenti).

La struct CommandElement rap-
presenta invece la descrizione del
comando vero e proprio, ovvero
il testo (name) ed il puntatore
alla funzione che lo gestisce
(handler). Nella struct (che & pra-
ticamente la stessa cosa di una
class, salvo qualche lieve diffe-
renza) abbiamo anche inserito un
costruttore che permette di ini-
zializzarla. La FLASH_HELPER &
una macro (#define) che dipende
dal controller usato; per gli 8 bit
viene tradotta in __FlashStrin-
gHelper, per poter utilizzare

le stringhe nella memoria flash

(e quindi risparmiare preziosa
RAM), mentre nei 32 bit viene
tradotta in una semplice char,
visto che per queste tipologie di
controller non c¢’e differenza tra
stringhe in RAM o nella Flash.
La lista dei comandi viene quindi
rappresentata in questo modo:

List<CommandElement> commandList;

Qui utilizziamo una template
scritta da noi per gestire una lista

stampa romantico”)

stampa citazione”)

commandList.add (new CommandElement (F (“*aggiungi”)
commandList.add (new CommandElement (F (“rimuovi”)
commandList.add (new CommandElement (F (“mostra lista”)
commandList.add (new CommandElement (F (“stampa lista”)
commandList.add (new CommandElement (F (“svuota lista”)
commandList.add (new CommandElement (F (%
commandList.add (new CommandElement (F (“romantico”)
commandList.add (new CommandElement (F (%
commandList.add (new CommandElement (F (“citazione”)
commandList.add (new CommandElement (F (“stampa”)
commandList.add (new CommandElement (F (“help”)

Cmd_Aggiungilista));
Cmd_Rimuovilista));
Cmd Mostralista));
Cmd_Stampalista));
Cmd_SvuotalLista));
Cmd_StampaRomantico)) ;
Cmd_Romantico));
Cmd_StampaCitazione));
Cmd _Citazione));
Cmd_Stampa)) ;
Cmd_Help));

di oggetti generici. Perché una
template (e soprattutto... cos’e
una template???), e perché non
utilizzarne una gia fatta da altri?
Alla prima domanda e mezza si
puo rispondere che una template
e quello che si chiama una classe
generica, ovvero pud essere
utilizzata per gestire differenti
tipi di oggetti. Quindji, se volessi-
mo realizzare una lista di patate,
basterebbe scrivere:

List<Patate> listaPatate;

Fig. 11 - Cablaggio
dell’elettronica.

S, o8
3

&

[CNCRON N ONONONCRONONONCONONCNCIM
™

ed otterremmo quanto desidera-
to, senza dover scrivere una sola
riga di codice aggiuntivo. Allo
stesso modo, se desiderassimo
una lista di Rose, potremmo
scrivere:

List<Rose> listaRose;

Una bella differenza dal dover ri-
scrivere ogni volta tutto il codice
per gestire tipi di dati differenti!
La template List si trova nel file
List.h dentro alla cartella del
progetto; e probabile che in una
futura versione delle librerie
raccoglieremo un po’ di codice
riutilizzabile come questo in una
libreria apposita. Analizzando

il codice corrispondente, si nota
che il template fornisce funzio-
ni per aggiungere, eliminare e
percorrere tutti gli elementi della
lista; non si tratta di un codice
particolarmente complesso ne
performante, ma svolge egregia-
mente il suo compito.

Alla seconda domanda... non c’e
una risposta: e vero che esistono
in rete decine di implementazioni
di Liste, Array, eccetera; sempli-
cemente abbiamo preferito scri-
verne una limitata (e facilmente
comprensibile) adatta al nostro

PRINTER

12 Febbraio 2017 ~ ELETTRONICA IN

scopo, anche per motivi didattici.
Una volta dichiarata la lista di
comandi occorre riempirla, e
questo avviene nelle linee del
Listato 5. La funzione add ag-
giunge un nuovo (new) elemento
(CommandElement) inizializzan-
dolo con il nome del comando e
la funzione di gestione (handler)
corrispondente. Ad esempio, la
prima riga implementa il co-
mando “aggiungi” gestito dalla
funzione Cmd_AggiungiLista().
Torniamo ora al gestore degli
eventi di FishGram, che utilizza
il codice di Listato 6.
Questo non fa altro che percor-
rere tutta la lista di comandi,
confrontandoli con I'inizio del
messaggio ricevuto; quando tro-
va una corrispondenza termina
la ricerca ed esegue il comando
corrispondente.
Se non trova una corrispondenza
invia al mittente un messaggio di
errore (la penultima riga).
La funzione starts() richiamata
dall’handler e un piccolo helper
(funzione di utilita) che controlla
se un testo inizia con una stringa
prefissata, ed e definita poche
righe sopra (Listato 7).
Non ci resta che vedere una delle
funzioni di gestione dei comandji;
per semplicita vedremo quella
che implementa il comando
stampa’ (Listato 8).
Questa funzione non fa altro
che stampare, come richiesto, il
mesaggio (sendToPrint(str)) e
risponderci con un messaggio di
conferma, costruito per rispar-
miare ripetizioni con la helloMsg
(che crea una stringa costituita da
“Ciao <nome>, “, aggiungendovi
il testo “ho stampato il tuo mes-
saggio *”, il testo del messaggio
e la virgoletta di chiusura finale,
reinviandolo poi al mittente tra-
mite la FishGram.sendMessage().

/

CITAZIONI E LISTA DELLA SPESA
Per queste due funzionalita da-

remo solo una breve descrizione;
non si tratta di codice partico-
larmente complesso ma appe-
santirebbe comunque troppo
l'articolo. Il codice & comunque
ben commentato e scaricabile dal
nostro sito www.elettronicain.it e,
in seguito, verra incluso tra gli
esempi nelle librerie di Fishino.
Le citazioni (e le frasi romanti-

che) vengono implementate per
forza di cose appoggiandoci ad
un server esterno, tramite un
programmino in php contenente
una serie di frasi preimpostate ed
un algoritmo per poterne genera-
re una casuale ad ogni accesso, a
meno di non richiederne una spe-
cifica. Ma perché un php esterno?
Non si potevano implementare

// fishgram event handler
bool FishGramHandler (uint32_t id, const char *firstName, const char *lastName, const char *message)

{

CommandElement *elem= commandList.head();
while (elem)
{
if (starts(message, elem->name))
{
message +=strlen P((const char *)elem->name) ;
while (*message && isspace (*message))
messaget+;
return elem->handler (id, firstName, lastName, message) ;

}

elem=elem->next ();

}

// command not found
FishGram.sendMessage (id, F(“Comando sconosciuto - inviare ‘help’ per lista comandi”));
return false;

bool starts(const char *msg, const FLASH HELPER *cmd)

{

char c;
uintlée_ti=0;
while((c =charAt (cmd, i++)) !'=0)

if (toupper (*msg++) !=toupper (c))
return false;
return true;

Listato 8

bool Cmd Stampa (uint32 t id, const char *firstName, const char *lastName, const char *str)

{

// print the message
sendToPrint (str) ;

// send a confirmation back to bot

String ans =helloMsg (firstName, lastName) ;
ans +=F (“ho stampato il tuo messaggio ‘”);
ans +=str;

ans +=“'"";

FishGram.sendMessage (id, ans.c_str());
return false;

ELETTRONICA IN ~ Febbraio 2017 13

// la lista della spesa
struct ShoppingListElement: public ListElement<ShoppingListElement>

{

che sarebbe utile ma che avreb-
be complicato il codice oppure

char *item;

ShoppingListElement (const char *s) { item=strdup(s); }
virtual ~ShoppingListElement () { if (item) free(item); }

List<ShoppingListElement>shoppingList;

direttamente sul Fishino, magari
con 1'utilizzo di una scheda SD?
Si, ma non con le versioni UNO
e GUPPY che abbiamo scelto per
l'applicazione, soprattutto per
motivi di compattezza. Queste
infatti non hanno lo spazio di
memoria sufficiente per gestire
sia FishGram che la scheda SD.
Utilizzando lo (scarso) spazio
lasciato libero in Flash dall’appli-
cazione avremmo potuto mettere
insieme poche frasi, cosa che
avrebbe portato a ripetizioni nel
breve termine. Utilizzando una
Fishino Mega o, ancora meglio, la
nuova Fishino32 questi problemi
spariscono completamente ed e
possibile implementare in locale
anche un grosso database di
citazioni su scheda SD o anche
direttamente nella memoria
Flash del controller.

Tornando alle citazioni, la richie-
sta avviene, tramite protocollo
HTTP (per i limiti di Fishino

di non poter aprire pit1 di una
connessione HTTPS alla volta)
tramite una semplice richiesta
GET ad una path situata sul sito
www.fishino.it. Il modulo PHP
risponde con una stringa di testo
semplice con questo formato:

ID, LEN, citazione

dove ID & un numero identifi-
cativo della citazione, per poter-
la “ripescare”, ad esempio, per
mandare al mittente la conferma
di quanto si e stampato; LEN e la
lunghezza del testo della citazio-
ne stessa, necessaria per poter
utilizzare le funzioni startMes-
sage() e annesse della libreria
FishGram (ricordate? Permettono

di inviare un messaggio anche
carattere per carattere, senza
quindi la necessita di doverlo
scaricare per intero sul Fishino).
11 codice di richiesta della citazio-
ne al server contenuto nei moduli
Cit.h e Cit.cpp, anch’essi reperi-
bili nella cartella dell’applicazio-
ne, ed e di facile comprensione

e ben commentato. Per quanto
riguarda la lista della spesa, in-
vece... abbiamo sfruttato ancora
una volta la nostra template List,
essendo questa perfetta per gesti-
re questo tipo di dati; la dichiara-
zione e riportata sul Listato 9.
Come si puo vedere, abbiamo
prima definito una nuova struct
contenente il dato che ci interessa
(un semplice puntatore a carat-
tere, che conterra una stringa di
testo allocata dinamicamente
tramite strdup()); la novita qui e
il distruttore (~ShoppingListEle-
ment()) che si occupa di liberare
la memoria dinamica quando
eliminiamo 1’elemento.

La dichiarazione della lista e
quindi immediata, come si vede
dalla linea successiva alla struct,
ed il suo utilizzo identico a quel-
lo relativo alla lista di comandi.
In questo caso utilizziamo anche
la funzione remove() per elimina-
re, a richiesta, elementi dalla lista.
Per esempio, se vogliamo aggiun-
gere “Pasta” alla lista tramite
codice, possiamo scrivere:

shoppingList.add (new

ShoppingListElement (“Pasta”));

Come accennato, la nostra imple-
mentazione di List & ben lungi
dall’essere completa; manca, per
esempio, una funzione di ricerca,

limitato la generalita dello stesso.
Per cercare un oggetto nella lista
dovremo quindi eseguirne una
scansione completa “a mano”,
come fa il gestore di eventi di
FishGram visto sopra.

L'ELETTRONICA

Il collegamento della stampante
e davvero semplicissimo (Fig.
11); bastano tre cavetti: uno da
collegare alla massa del Fishino,
uno alla linea D6 (il TX, ovvero
I'RX della stampante) ed uno
alla linea D5 (I'RX, ovvero il TX
della stampante). La stampantina
comunica tramite un semplice
protocollo seriale, per il quale
sfruttiamo una SoftwareSerial
tramite 'apposita libreria, ed

e gestita dalla libreria Adafru-
it_Thermal.

Bene, si conclude qui la descri-
zione della nostra Note Machine,
utilizzabile anche come spunto
per controlli molto diversi, quali
per esempio la gestione di luci,
allarmi ed altro. Prossimamente
presenteremo altre interessanti
applicazioni di Telegram. B

\

D . ATERALE
‘ er il MATERIALE
o p

Tutti i componenti utilizza-
. Sostituire
-+ testo

T

sensore ad infrarossi IR38DM
costa 2,50 Euro mentre l'inte-

14 Febbraio 2017 ~ ELETTRONICA IN

