
Gadget

Elettronica In ~ Luglio / Agosto 2017 1

onoscerete
probabilmente

le “cornici digitali”,
meglio note come “di-
gital frame”, ossia quei
dispositivi multime-
diali che sembrano un
quadretto e che posso-
no riprodurre una serie
di fotografie presenti
su un supporto come
SD-Card o Pen Drive
USB in varie modalità:
ad esempio la sequen-

za ciclica con eventuali
effetti video. Questi
dispositivi, che nelle
versioni più avanzate
possono riprodurre
anche filmati, sono
limitate dal fatto che
possono attingere sola-
mente a un supporto di
memoria permanente
locale. Partendo da
questa considerazione
e guardandoci intor-
no, abbiamo voluto

PHOTOFISH
DIGITAL

FRAME WIFI

C
Versione connessa delle popolari cornici

digitali, che permette di riprodurre
contenuti multimediali ricevuti in

wireless grazie a Fishino e allo shield
TFT. L’occasione ci permette di fare

didattica sulla gestione delle immagini.
Prima puntata.

 di MASSIMO DEL FEDELE

2 Luglio / Agosto 2017 ~ Elettronica In

Elettronica In ~ Luglio / Agosto 2017 3

creare qualcosa di simile, però svincolato dai limiti
della memoria locale; come scoprirete, il progetto
descritto in queste pagine è sostanzialmente una
digital frame con una marcia in più, perché capace
di caricare e visualizzare contenuti attraverso la
connettività WiFi fornita dalle nostre schede Fishi-
no e mostrarli sfruttando le potenzialità dei nuovi
modelli a 32 bit.
Iniziamo con le caratteristiche della nostra cornice,
che possiamo definire ”telematica”:
•	 possibilità di inviare le immagini tramite i servizi

del “social” Telegram;
•	 possibilità (utilizzando Fishino32) di riprodurre

file audio, sempre inviati da Telegram (estensio-
ne futura);

•	 ridimensionamento e rotazione automatiche del-
le immagini per ottimizzarle in base alla risolu-
zione del display;

•	 appena 2 secondi richiesti per la visualizzazione
di un contenuto a decorrere dall’invio.

Tale “ritardo” si ottiene utilizzando per il progetto
una Fishino a 32 bit; se si adotta una Mega ad 8 bit,
il tempo aumenta a circa 30 secondi.
Per quanto il progetto possa fare di più, in que-
sta prima fase abbiamo appositamente evitato di
introdurre alcune funzionalità, che probabilmente
aggiungeremo in futuro; tra esse, la possibilità di
memorizzare su SD le immagini ricevute e farle
scorrere secondo criteri predeterminati e/o impo-
stabili tramite messaggi Telegram.
Allo stesso modo, è possibile implementare un
menu sullo schermo del display TFT (che è un
touch resistivo) in modo da poter configurare l’ap-
plicazione tramite un menu su schermo.
Lo spazio per queste successive aggiunte non man-

ca, specialmente sul Fishino32, quindi nei prossimi
mesi vedremo di aggiungerle in modo da estendere
le funzionalità, creando nuove librerie software che
saranno comunque utilizzabili anche per altri scopi.
Abituati a utilizzare i nostri smartphone per visua-
lizzare immagini e video in tempo reale, queste
caratteristiche, impensabili anche solo una decina
di anni fa, non stupiscono più di tanto, se non fosse
che nei moderni cellulari e Personal Computer sono
contenuti microprocessori velocissimi e multi-core,
con i quali anche programmi poco ottimizzati sono
in grado di fare cose notevoli; sono presenti inoltre
quantità enormi (gigabyte) di memoria RAM in cui
parcheggiare le immagini e i dati ricevuti, per poi
elaborarli utilizzando altre quantità non trascurabili
di risorse. Quindi, perché non utilizzarli? Ebbene,
i motivi sono tanti, ma si possono riassumere in
questi tre:

- costi;
- consumi di energia;
- necessità di un complesso sistema operativo.

Gli smartphone o, peggio, i PC, consumano decine
se non centinaia di watt, costano decisamente più
di un microcontroller (escludendo forse la fortunata
famiglia della Raspberry Pi, che ci si avvicina pur
dovendo mettere in computo il costo delle perife-
riche) e, cosa non trascurabile, richiedono tempi
di avvio non brevi. Un microcontroller, per contro,

“parte” non appena viene alimentato, consuma
e costa poco, quindi può tranquillamente venire
dedicato ad uno scopo specifico come quello che ci
prefiggiamo.
Dove sta l’inghippo, quindi? Principalmente,
appunto, nella scarsità di risorse disponibili nei
microcontrollori.

Fig. 1
Schema a blocchi
dell’applicazione.

2 Luglio / Agosto 2017 ~ Elettronica In

Elettronica In ~ Luglio / Agosto 2017 3

A differenza di un programma per Personal Com-
puter, uno sketch capace di realizzare l’applicazio-
ne che ci proponiamo richiede consistenti ottimiz-
zazioni sia per funzionare a velocità discrete, sia
per occupare il minimo indispensabile di memoria
RAM, sempre scarsa in questo tipo di dispositivi:
si parla di kilobyte e non di megabyte o gigabyte.
Anche una Fishino32, che con i suoi 128 k di RAM è
un gigante tra i microcontroller, se paragonata a un
sistema a microprocessore con qualche gigabyte di
RAM a disposizione, diventa una “formichina”.
Per capirne le problematiche, che verranno comun-
que approfondite in seguito nella descrizione del
funzionamento, basti sapere che un’immagine, per
quanto caratterizzata da una risoluzione grafica non
particolarmente elevata (intorno ai 400x400 pixel
con profondità di colore di 16 bit) occupa, non com-
pressa, ben 320 kbyte di memoria: quasi il triplo di
quanto disponibile su una board Fishino32 e ben 40
volte quella di una Arduino o Fishino Mega.
Se un’immagine non compressa, quindi visualiz-
zabile direttamente, occupa quantità notevoli di
memoria, nemmeno le versioni compresse scherza-
no (.jpg, formato JPEG): si viaggia sempre intorno ai
50÷100 kB ed oltre, quindi già di per se sufficienti a
riempire tutta la RAM o quasi, anche sulla Fishino32.

COME FUNZIONA?
Dunque, come si fa con una scheda Arduino a rea-
lizzare l’applicazione del caso? Esclusa la possibilità
di operare normalmente, ovvero di scaricare dalla

rete l’immagine intera, decomprimerla in memoria,
trasferirla al display, eccetera, che cosa ci resta?
Semplicemente, occorre lavorare byte per byte, pro-
cessando i dati man mano che vengono ricevuti e
trasferendone direttamente il risultato al display; in
questo caso ci serve un buffer limitato ma veloce.
L’applicazione che realizza tutto ciò è piuttosto
complessa, ma ben scomponibile in elementi logici
relativamente semplici da comprendere; iniziamo
quindi dal classico schema a blocchi, mostrato
nella Fig. 1. Descriveremo qui tutti gli elementi,
approfondendo in dettaglio il decoder JPEG anche
dal punto di vista teorico, che riteniamo piuttosto
interessante.

NOTE PRELIMINARI
Come visto negli applicativi precedenti, l’intera-
zione tra Fishino e Telegram avviene attraverso

Listato 1
	_client << F(“GET /bot”);
	if (_flashToken)
		 _client << (const __FlashStringHelper *)_token;
	else
		 _client << _token;
	_client	<< F(“/getUpdates?offset=”);
	_client.print(id, DEC);
	_client
		 << F(“&timeout=4&limit=1&allowed_updates=messages HTTP/1.1\r\n”)
		 << F(“User-Agent: FishGram 1.0.0\r\n”)
		 << F(“Host: api.telegram.org\r\n\r\n”)
	;

Per realizzare il digital Frame WiFi
utilizziamo il TFT shield descritto
nell’articolo ad esso dedicato nel
fascicolo di giugno scorso, che monta
a “sandwich” il display TFT. Lo shield
è adatto ad essere montato, con gli
adattamenti dei connettori descritti
nello stesso articolo, a tutte le board
Fishino e può ospitare display grafici
che richiedano il minor numero di I/O
possibili; in pratica supporta display
con comunicazione SPI, facilmente
reperibili nei formati 2,4 o 2,8 pollici.
Questo tipo di display utilizza le linee
SPI (MISO, MOSI e SCK), in comune
con il modulo WiFi e le schede SD, una

Applicare il display
con TFT SHIELD

linea di selezione ed una di controllo
per il display ed altre 2 linee per lo
schermo touch-sensitive, quindi quat-
tro I/O utilizzati in “esclusiva” contro
10÷12 minimo per i modelli ad inter-
faccia parallela. Se volete utilizzare un
display senza touch-panel (è possibile
farlo, almeno in questa applicazione)
risparmiate due linee di I/O.
Per la gestione dello shield abbiamo
approntato tre librerie specifiche che
ne consentono il controllo completo
da parte di Arduino e Fishino. Queste
librerie sono:
•	 FishinoGFX,	 versione
praticamente identica all’analoga di

Adafruit, che gestisce le funzioni grafi-
che “ad alto livello”;
•	 FishinoILI9341, che gestisce
le funzioni di interfaccia con il display
a livello hardware; anche questa libre-
ria è stata realizzata partendo dall’a-
naloga di Adafruit, ma con modifiche
abbastanza sostanziali;
•	 FishinoXPT2046; che gesti-
sce il touch screen, scritta da zero di
nostro pugno.

4 Luglio / Agosto 2017 ~ Elettronica In

Elettronica In ~ Luglio / Agosto 2017 5

l’ausilio di un Bot, ovvero un “utente artificiale e
virtuale” di Telegram, che potremo creare noi stessi
sulla base delle nostre esigenze.
Il procedimento di creazione di un Bot è già stato
ampiamente spiegato ad esempio nel fascicolo 208,
quindi non lo ripeteremo; nel caso potete trovare
le descrizioni dettagliate, sia nel predetto fascicolo,
sia nel n° 212 di Elettronica In (o anche nell’articolo
del “Termostato con Fishino” del fascicolo n° 215).
Quello di cui abbiamo bisogno da qui in poi è la
cosiddetta TOKEN di accesso al bot, con la quale lo
potremo contattare tramite richieste HTTPS.
L’uso dell’applicazione è semplicissimo, disponen-

do del nostro TFT shield: si inserisce il TFT shield
nella scheda Fishino prescelta, quindi si monta il
display nello shield; questo per l’hardware. Sul lato
software, si modifica lo sketch aggiustando SSID
e password della propria rete WiFi ed il Token del
bot Telegram, che dovrete avere creato preventiva-
mente come accennato.
Fatto questo, basta caricare lo sketch ed inviare
al Bot un’immagine tramite Telegram: la vedrete
apparire immediatamente sul display!
Prima di vedere il firmware che consente la vi-
sualizzazione dedichiamo qualche paragrafo alla
descrizione dei vari moduli impiegati.

Listato 2
[
	ok:true,
	result:[
		 {
		 	 update_id:323513224,
		 	 message:{
		 	 	 message_id:1164,
		 	 	 from:{
		 	 	 	 id:328328564,
		 	 	 	 first_name:”Massimo”,
		 	 	 	 last_name:”Del Fedele”
		 	 	 },
		 	 	 chat:{
		 	 	 	 id:328328564,
		 	 	 	 first_name:”Massimo”,
		 	 	 	 last_name:”Del Fedele”,
		 	 	 	 type:”private”
		 	 	 },
		 	 	 date:1494343276,
		 	 	 photo:[
					 {
		 	 	 	 	 file_id:”AgADBAADOKkxG1FikFALMHOINZs_th8fqRkABCSeb-z9KYvV-U4BAAEC”,
		 	 	 	 	 file_size:1457,
		 	 	 	 	 width:51,
		 	 	 	 	 height:90
		 	 	 	 },
					 {
		 	 	 	 	 file_id:”AgADBAADOKkxG1FikFALMHOINZs_th8fqRkABCnm8_UrmclE-k4BAAEC”,
		 	 	 	 	 file_size:20309,
		 	 	 	 	 width:180,
		 	 	 	 	 height:320
		 	 	 	 },
					 {
		 	 	 	 	 file_id:”AgADBAADOKkxG1FikFALMHOINZs_th8fqRkABLFIAum3eG-X_E4BAAEC”,
		 	 	 	 	 file_size:91483,
		 	 	 	 	 width:450,
		 	 	 	 	 height:800
		 	 	 	 },
					 {
		 	 	 	 	 file_id:”AgADBAADOKkxG1FikFALMHOINZs_th8fqRkABHV37QcFKp9z-04BAAEC”,
		 	 	 	 	 file_size:162304,
		 	 	 	 	 width:720,
		 	 	 	 	 height:1280,
					 }
]
			 }
		 }
]
]

4 Luglio / Agosto 2017 ~ Elettronica In

Elettronica In ~ Luglio / Agosto 2017 5

MODULI FishGram E JSONStreamingParser
Entrambi i moduli sono già stati utilizzati in
applicazioni precedenti, anche se in questo caso li
abbiamo estesi (soprattutto il primo) per supporta-
re gli elementi multimediali assenti nelle versioni
precedenti, quando ci interessavano i soli messaggi
di testo.
Iniziamo dalla lettura dei messaggi Telegram
spiegando come funziona, fermo restando che pur
avendolo visto abbastanza bene negli applicativi
già realizzati, lo ripeteremo velocemente qui con le
dovute aggiunte relative ad immagini e file audio.
Telegram ha due modalità di funzionamento: pol-
led (che si potrebbe tradurre in “a richiesta”) ed una
specie di modalità event-driven (Webhook, letteral-
mente “aggancio al web”), nella quale un server si
mette in ascolto ed il sistema di Telegram invia gli
eventi non appena arrivano. La seconda modalità
sembrerebbe allettante, se non fosse che Telegram è
piuttosto esigente, richiedendo un server con certifi-
cati SSL, un nome di dominio, eccetera, rendendola
impraticabile nel nostro caso, a meno di non appog-
giarci ad un sistema esterno.
La modalità polled, per contro richiede l’invio pe-
riodico di richieste al sistema Telegram per verifi-
care l’eventuale presenza di messaggi, che possono
poi essere scaricati.
Invio “periodico” quanto? Qui occorre un compro-
messo; se facciamo richieste troppo frequenti, il
sistema viene sovraccaricato e potrebbe decidere
di “chiudere i rubinetti”, impedendoci di ricevere
aggiornamenti di stato.
Se, per contro, facciamo richieste troppo distanti nel
tempo, pur non perdendo eventi (che vengono co-
munque memorizzati da Telegram per un periodo
più che sufficiente) rischiamo di rispondere troppo
lentamente ai nostri comandi.
Il compromesso che abbiamo trovato è di una
richiesta ogni 5 secondi circa, quindi mediamente
avremo una latenza di 2,5 secondi dal nostro co-
mando alla sua esecuzione.
Vediamo ora come, una tipica richiesta a Telegram,
può venire direttamente inserita nel campo URL del
nostro browser; l’istruzione è:
https://api.telegram.org/bot<TOKEN>/getUpdates?offset
=nnn&timeout=4&limit=1&allowed_updates=messages

Si tratta di una semplice richiesta HTTP di tipo
GET; “<TOKEN>” rappresenta il “codice di ac-
cesso” che identifica il nostro bot, “getUpdates” è
il comando di richiesta di aggiornamenti, “offset”
è l’ID di messaggio a partire dal quale vogliamo
richiedere gli aggiornamenti (solitamente fornito

come l’id dell’ultimo messaggio ricevuto + 1, in
modo da ricevere solo i successivi), “limit=1” indica
che vogliamo ricevere un messaggio alla volta,

“allowed_updates=messages” indica che vogliamo
ricevere solo i messaggi e non, per esempio, gli
ingressi/uscite dalla chat di altre persone.
Tutte le richieste al server di Telegram vanno fatte
tramite il protocollo HTTPS, cosa che costituisce un
grosso problema per molti shield WiFi che non lo
supportano, ma non per la nostra scheda Fishino la
quale, anche se con certi limiti, è in grado di stabili-
re connessioni sicure.
Ovviamente la nostra Fishino non dispone di un
browser web ma di un client (per la precisione un
FishinoSecureClient) tramite il quale possiamo
inviare e ricevere dati tramite il protocollo TCP.
Lo spezzone di codice che esegue la richiesta è ri-
portato nel Listato 1, nel quale, come potete notare,
il codice fa più o meno quanto faremmo manual-
mente sulla riga di comando del browser, salvo ag-
giungere in testa il tipo di richiesta (GET) ed in coda
degli elementi HTTP indispensabili, che sono il tipo
di protocollo, HTTP/1.1, User-Agent ed Host.
Si noti il doppio “capolinea” (\r\n\r\n) che termi-
na gli header HTTP ed avvia la richiesta.
In una richiesta di tipo GET è assente il corpo del
messaggio (che in una richiesta di tipo POST, ad
esempio, andrebbe messo dopo il doppio capolinea
di cui sopra).
L’istruzione condizionale “if(_flashToken)” per-
mette di supportare token sia nella memoria RAM
che nella PROGMEM, cosa ottimale se il token è
fisso e lo si vuol inserire direttamente nello sketch,
in modo da risparmiare preziosa RAM nei pro-
cessori in cui lo spazio della FLASH è separato da
quello della RAM (architettura Harvard, come per
esempio nel microcontrollore della scheda Fishino
MEGA). Sulla Fishino32 l’area di indirizzamento
è “piatta”, quindi non occorre differenziare le due
cose.
Una volta inviata la richiesta, Telegram risponde
con un pacchetto HTTP contenente i soliti Header
(che vengono saltati) ed un corpo in formato JSON;
una risposta tipica è quella visibile nel Listato 2.
Chiaramente abbiamo inserito noi la formattazione,
per rendere più chiaro il JSON ricevuto; nella realtà
la risposta contiene lo stretto indispensabile, quindi
niente capolinea, spazi non necessari, tabulazioni,
ecc., come nello stesso JSON non formattato qui di
seguito:

6 Luglio / Agosto 2017 ~ Elettronica In

Elettronica In ~ Luglio / Agosto 2017 7

[ok:true,result:[{update_id:323513224,message:{message_
id:1164,from:{id:328328564,first_
name:”Massimo”,last_name:”Del Fedele”},chat:{id:
328328564,first_name:”Massimo”,last_name:”Del Fe
dele”,type:”private”},date:1494343276,photo:[{fi
le_id:”AgADBAADOKkxG1FikFALMHOINZs_th8fqRkABCSeb-
z9KYvV-U4BAAEC”,file_size:1457,width:51,height:90},
{file_id:”AgADBAADOKkxG1FikFALMHOINZs_th8fqRkABCnm8_
UrmclE-k4BAAEC”,file_size:20309,width:180,height:320},{f
ile_id:”AgADBAADOKkxG1FikFALMHOINZs_th8fqRkABLFIAum3eG-
X_E4BAAEC”,file_size:91483,width:450,height:800},{file_
id:”AgADBAADOKkxG1FikFALMHOINZs_th8fqRkABHV37QcFKp9z-
04BAAEC”,file_size:162304,width:720,height:1280,}]}}]]

Non dimentichiamoci che la formattazione è
utilissima ad un umano, ma controproducente per
una macchina, che con essa si troverebbe a dover
leggere un bel po’ di caratteri non necessari.

Il JSON (formattato) è facilmente comprensibile,
si tratta di una serie di informazioni nel formato
nome:valore, che contengono tutto quel che ci serve
sapere sul messaggio Telegram.
Si notino nel JSON di esempio i sottocampi del
campo ‘photo’; Telegram, che evidentemente è stato
studiato molto bene per gestire vari formati di im-
magine ed evitare trasferimenti pesanti via Internet
quando non è necessario, è in grado di fornire dif-
ferenti risoluzioni della foto inviata, permettendoci
quindi di scegliere quella “giusta”, cioè quella più
vicina alla risoluzione del nostro schermo, senza
peraltro dover scaricare quantità enormi di dati per
poi comprimerli successivamente.
Quale formato scegliere e come avviene la scelta,
verrà chiarito successivamente, quando spieghere-
mo il decoder JPEG.
Ora prestate attenzione a un altro particolare: i
campi ‘file_id’ contengono un codice univoco che
ci permette di identificare il file da scaricare, non il
nome del file stesso, che va richiesto tramite un’ap-
posita chiamata “getFile” alle API di Telegram. La
nostra libreria si occupa automaticamente di questo
passaggio aggiuntivo!
Vedremo più avanti i vari campi in dettaglio; al
momento ci interessa sapere come leggerli tramite
Fishino, cosa non banalissima.
Su un normale PC la soluzione ovvia, e quella
utilizzata da tutti, è di caricare l’intero JSON in me-
moria, utilizzare una delle tante librerie di “parsing”
disponibili e poi leggere i campi in base al nome.
Tutto bello, tutto semplice, ma... noi abbiamo po-
chissima RAM a disposizione e vogliamo sfruttarla
al meglio!
Il JSON dell’esempio, che è un JSON piccolo, occu-
pa già 657 byte, corrispondenti 2/3 della memoria
di una board Fishino o Arduino UNO, un decimo
di quella di un Arduino/Fishino MEGA. Non poco,
anzi, troppo.
Che fare quindi? L’ideale sarebbe leggere il file
carattere per carattere man mano che arriva, esami-
narlo al volo ed estrarne le informazioni necessarie
senza memorizzare quelle inutili.
Per questo abbiamo creato la libreria JSONStrea-
mingParser che realizza, come si intuisce dal nome,
un parser (analizzatore, più o meno, il termine è
intraducibile!) streaming, ovvero di “flusso”: viene

“nutrito” carattere per carattere con i dati che arriva-
no dal client TCP e, quando ne ha a sufficienza per
capire di cosa si tratta, esegue una certa azione.
Per capire la differenza sostanziale del procedi-
mento, vediamo uno pseudocodice che utilizza un
parser normale:

Listato 3
const char *leggiStringa()
{
	static char buf[100];
	char *bufP = buf;
	while(client.available())
		 *bufP++ = client.read();
	*bufP = 0;
	return buf;
}

void stampaValori(void)
{
	char nome[100];
	char valore[100];

	const char *stringa = leggiStringa();
	const char *p = stringa;

	// ciclo per ogni gruppo nome:valore
	// termina a fine stringa, quando trova un carattere nullo
	while(*p)
	{
		 char *nomeP = nome;
		 char *valoreP = valore;

		 // ciclo di lettura nome
		 while(*p && *p != ‘:’)
		 	 *nomeP++ = *p++;
		 *nomeP = 0;
		
		 // salta il ‘:’
		 if(*p)
		 	 p++;

		 // ciclo di lettura valore
		 while(*p && *p != ‘,’)
		 	 *valoreP++ = *p++;
		 *valoreP = 0;

		 // stampa nome e valore
		 Serial << “NOME :” << nome << “\n”;
		 Serial << “VALORE:” << valore << “\n”;

		 // salta l’eventuale virgola
		 if(*p)
		 	 p++;
	}
}

6 Luglio / Agosto 2017 ~ Elettronica In

Elettronica In ~ Luglio / Agosto 2017 7

•	Leggo tutto il JSON dal client in una stringa di
	 testo, chiamiamola ‘json’
•	Uso una classe di parsing, nella quale infilo
	 la stringa ‘json’
•	Esamino i valori in base al nome

Semplificando, in C++ questo risulterebbe in qual-
cosa di questo tipo:

String json;
while(client.available())
	 json += client.read();
JSONParser parser(json);
Serial << “Il nome del mittente è:” << parser.Get(“first_name”) << “\n”;

Utilizzando il nostro parser, le cose cambiano
radicalmente; innanzitutto dobbiamo scrivere una
funzione che gestisca gli eventi JSON, come di
seguito:

void JSONCallback(uint8_t filter, uint8_t level, const char *name, const char *value, void *cbObj)
{
	 Serial << “Ho ricevuto il dato di nome “ << name << “ col valore “ << value << “\n”;
}

Poi occorre creare il nostro oggetto parser, colle-
garlo alla funzione definita sopra e “nutrirlo” con i
caratteri ricevuti dal client TCP:

JSONStreamingParser parser;
parser.setCallback(JSONCallback, NULL);
while(client.available())
	 parser.feed(client.read());

Il parser chiamerà AUTOMATICAMENTE
la funzione JSONCallback() ogni volta che
avrà ricevuto completamente un dato del tipo

‘nome:valore’, separando nome e valore e for-
nendo alcune altre informazioni, delle quali
è importante la variabile ‘level’ che indica il
livello di nidificazione del valore letto, ovvero
l’indentazione (spostamento verso destra) visi-
bile nel codice JSON ben formattato visto sopra.
Potremo ricevere per esempio (sempre con riferi-
mento al JSON riportato sopra):

level = 4
name = “width”
value = 51

Il livello risulta utilissimo per capire “dove sia-
mo” dentro al JSON. La differenza sostanziale è

Listato 4
void stampaValori(void)
{
	char nome[100];
	char valore[100];
	char *nomeP = nome;
	char *valoreP = valore;

	enum Stati { leggiNome, leggiValore, fine };
	Stati stato = leggiNome;

	while(stato != fine)
	{
		 int c = client.read();
		 switch(stato)
		 {
		 	 case leggiNome:
		 	 	// fine stringa ? (probabile errore)
		 	 	if(c <= 0)
		 	 		 // termina
		 	 		 stato = fine;
		 	 	// fine nome ?
		 	 	else if(c == ‘:’)
				 {
		 	 		 // si, termina il nome
		 	 		 *nomeP = 0;

		 	 		 // passa alla lettura del valore
		 	 		 stato = leggiValore;
				 }
		 	 	// carattere normale ?
		 	 	else
		 	 		 // aggiunge il carattere corrente al nome
		 	 		 *nomeP++ = c;
		 	 	break;
		 	 case leggiValore:
		 	 	// fine valore o fine stringa ?
		 	 	if(c <= 0 || c == ‘,’)
				 {
		 	 		 // termina il valore corrente
		 	 		 *valoreP = 0;

		 	 		 // stampa nome e valore
		 	 		 Serial << “NOME :” << nome << “\n”;
		 	 		 Serial << “VALORE:” << valore << “\n”;
		 	 		 // se fine stringa termina
		 	 		 if(c <= 0)
		 	 		 	 stato = fine;
		 	 		 // altrimenti passa al prossimo nome
		 	 		 else
					 {
						 // ri-inizializza i puntatori ad inizio nome e valore
		 	 		 	 nomeP = nome;
		 	 		 	 valoreP = valore;

		 	 		 	 // passa allo stato di lettura nome
		 	 		 	 stato = leggiNome;
				 }
		 	 	// carattere normale ?
		 	 	else
		 	 		 // aggiunge il carattere corrente al valore
		 	 		 *valoreP++ = c;
		 	 	break;
		 	 case fine:
		 	 	// stampa un messaggio di saluto
		 	 	Serial << “Ho finito di leggere tutti i valori\n”;
		 }
	}
}

Listato 5
void loop(void)
{
	// process FishGram data
	FishGram.loop();
	
	if(millis() > tim)
	{
		 DEBUG_PRINT(“Free RAM : %u\n”, Fishino.freeRam());
		 tim = millis() + 3000;
	}
}

8 Luglio / Agosto 2017 ~ Elettronica In

Elettronica In ~ Luglio / Agosto 2017 9

che non saremo noi a chiedere al parser i dati, ma
sarà il parser ad inviarceli, tramite la funzione
JSONCallback vista sopra, quando li ha a dispo-
sizione.
Questo implica che nell’analisi non potremo ri-
chiedere un dato già passato, che è andato irrime-
diabilmente perso se non l’abbiamo memorizzato
da qualche parte; occorre quindi studiare bene
la callback in modo da poter analizzare il JSON
memorizzando il minor numero di dati possibile.
Questo (ed altro) viene fatto automaticamente
dalla libreria FishGram, tramite una cosiddetta

“macchina a stati”.

LE MACCHINE A STATI
Le “macchine a stati” sono un po’ delle bestie nere
per molti programmatori, anche se risultano molto
comode in parecchie occasioni. Una spiegazione
completa esula dallo scopo di questo articolo, ma
ne possiamo dare una breve infarinatura con un
esempio semplice-semplice.
In poche, semplici e misteriose parole, una mac-

china a stati è una scatola nera che riceve dati
in ingresso, fornisce risposte in uscita (e questo
potrebbe valere per ogni programma) ma, e questo
a differenza di una funzione “normale”, le risposte
che dà dipendono da una o più variabili di stato
interne alla funzione stessa. Inoltre, oltre a fornire
una risposta in uscita, la macchina può cambiare
contemporaneamente il suo stato interno.
Visto che probabilmente, come successo a chi scrive
in passato, pochi avranno capito bene il discorso,
facciamo un esempio molto semplice, anche se
poco significativo. Diciamo di voler fare un parser
semplicissimo, che riconosce una sequenza di dati
di questo tipo:

nome:valore,nome:valore,......nome:valore

da una “stringona” di caratteri. Una versione molto
semplificata del parser JSON che utilizziamo.
La prima soluzione che viene in mente è di leggere
tutta la stringa, poi analizzarla, cercando i ‘:’ e le
virgole, come nel programmino del Listato 3.

Listato 6
// add an event function that will be called on each received message
FishGramClass &messageEvent(FishGramMessageEvent e);
		
// add an event function that will be called on each received picture
FishGramClass &pictureEvent(FishGramPictureEvent e);
FishGramClass &pictureEvent(FishGramPictureEvent e, uint16_t requestedWidth, uint16_t requestedHeight);
		
// add an event function that will be called on each received audio message
FishGramClass &audioEvent(FishGramAudioEvent e);

Listato 7
// fishgram picture event handler -- show image on TFT display and send back a confirmation message
bool FishGramPictureHandler(
	uint32_t id, const char *firstName, const char *lastName,
	FishGramRangeStream &stream, uint16_t w, uint16_t h, const char *caption)
{
	WebStream webStream(stream);
	FishinoJPEGDecoder decoder;
	decoder.setConsumer(consumeLine, 240, 320, JDR_COLOR565);
	decoder.setAutoCenter(JDR_CENTER_BOTH);
	if(decoder.setProvider(webStream) != JDR_OK)
	{
		 Serial << F(“Stream error\n”);
		 return false;
	}
	decoder
		 .setAutoScale(true)
		 .setRotation(JDR_ROT_AUTOCW)
	;
	decoder.decode();
	
	String ans = “Ciao “;
	ans += firstName;
	ans += “, ho ricevuto la tua foto”;
	FishGram.sendMessage(id, ans.c_str());
	
	return true;
}

8 Luglio / Agosto 2017 ~ Elettronica In

Elettronica In ~ Luglio / Agosto 2017 9

Chiaramente abbiamo omesso qualsiasi controllo di
errori, salto di spazi, eccetera. Il codice precedente
fa un pesante uso dei puntatori, e risulta quindi già
ben ottimizzato. Quello che si nota subito è la ne-
cessità di leggere e memorizzare l’intera “stringona”
per poi analizzarla in seguito; questo implica che
occorre fare una stima della sua lunghezza massima
e prevedere qualche controllo sulla medesima, qui
omesso per brevità.
Vediamo ora, nel Listato 4, la stessa cosa realizzata
con una macchina a stati. Ecco qua: abbiamo messo
a punto la nostra prima macchina a stati!
Il funzionamento è piuttosto semplice: la macchina
inizia con lo stato ‘leggiNome’, si prepara quindi a
leggere il nome, cosa che ci si aspetta stia ad inizio
stringa.
Man mano che gli forniamo i caratteri, che come si
vede vengono letti ed elaborati UNO AD UNO, e
non memorizzati, la macchina modifica il suo com-
portamento in base a quanto ricevuto.
Mentre si trova nello stato ‘leggiNome’, per esem-
pio, controlla che ci siano ancora caratteri (un
valore di C nullo o negativo implica fine dati), nel
qual caso passa allo stato ‘fine’; se la stringa non è
terminata, controlla se il carattere in arrivo è un ‘:’,
nel qual caso passa allo stato ‘leggiValore’.
Infine, se non si verifica alcuno dei due casi pre-
cedenti, considera il carattere appena letto come
appartenente al nome e lo aggiunge a questo.
Una volta terminata la lettura del nome, al primo ‘:’
trovato, lo stato cambia in ‘leggiValore’ ed i carat-
teri successivi in arrivo seguiranno un’altra strada
(secondo punto dello switch, case leggiValore); qui
si controlla sempre se la stringa è finita (c <= 0), nel
qual caso verrà comunque stampato l’ultimo valore

letto, oppure che il valore sia terminato da una vir-
gola (== ‘,’), nel qual caso viene stampato il valore
appena letto e si passa al prossimo nome oppure, se
nessuno dei casi precedenti si verifica, si considera
il carattere come appartenente al valore corrente al
quale viene aggiunto. Il tutto termina quando viene
raggiunto lo stato ‘fine’, nel qual caso il ciclo while()
termina.
Come si può facilmente intuire, il vero vantag-
gio di questo modo di procedere è che si evita la
memorizzazione della corposa stringa iniziale,
ovvero del nostro (semplificato) JSON; si ‘nutre’ il
tutto carattere per carattere e, quando la funzione

“si accorge” di avere dati a sufficienza, stampa i
risultati man mano.
Un altro vantaggio, non trascurabile, è che inse-
rendo tutta la parte contenuta nello ‘switch’ in una
funzione a se stante è possibile chiamarla passando-
le un carattere alla volta e, tra una chiamata e l’altra,
far fare al nostro controller qualcos’altro! Ed infatti
è proprio questo che facciamo nella funzione loop()
del nostro sketch (Listato 5).
La chiamata FishGram.loop() esegue proprio UN
SINGOLO PASSO della macchina a stati che c’è nel-
la libreria FishGram; tra un passo e l’altro possiamo
fare qualsiasi cosa, basta che questo ‘qualsiasi cosa’
duri poco tempo e non fermi il loop.
In questo caso, per esempio, stampiamo ogni 3 se-
condi (notate che abbiamo evitato l’uso della delay()
per non fermare il loop) la memoria disponibile.
Bene... abbiamo visto che la FishGram si occupa
di leggere i caratteri dal client TCP, quindi quanto
viene inviato da Telegram, li passa alla JSONStrea-
mingParser la quale, ad ogni ‘nome:valore’ che tro-
va chiama una nostra funzione di callback; quest’ul-

Fig. 2
Schema della
macchina a stati.

10 Luglio / Agosto 2017 ~ Elettronica In

Elettronica In ~ Luglio / Agosto 2017 11

tima, contenuta sempre nella libreria FishGram, si
occupa di analizzare quanto ricevuto ed agire di
conseguenza.
Nel nostro caso, la libreria FishGram deve:
•	 leggere e identificare il nome del mittente dei

messaggi;
•	 determinare il tipo di messaggio;
•	 in base al tipo di messaggio, leggere e memoriz-

zare altri valori e chiamare una funzione che si
occuperà di gestire il messaggio stesso.

In dettaglio, i tipi di messaggi che ci interessano sono:
•	 messaggi di testo;
•	 immagini;
•	 file audio.

Abbiamo quindi previsto tre funzioni differenti
per gestirli tutti distintamente; anzi, la FishGram
permette di impostare tre funzioni esterne, ognuna
destinata a gestire un certo tipo di messaggio (Lista-
to 6). Queste funzioni si trovano nel file principale
dello sketch, il file ‘PhotoFish.ino’; vengono colle-
gate alla FishGram tramite le seguenti linee della
setup():

FishGram.messageEvent(FishGramTextHandler);
FishGram.pictureEvent(FishGramPictureHandler, 240, 320);
FishGram.audioEvent(FishGramAudioHandler);

Vediamo in dettaglio la funzione FishGramPicture-
Handler(), che si occupa di gestire i messaggi conte-
nenti immagini; il codice è quello nel Listato 7.
La funzione riceve i seguenti parametri:
•	 id = è l’id del mittente, necessario per 		

poter rispondere;
•	 firstName = è il nome del mittente;
•	 lastName = è il cognome del mittente;
•	 stream = è un’oggetto che permette la lettura dei

byte che compongono l’immagine (vedremo poi
di cosa si tratta);

•	 w = la larghezza dell’immagine;
•	 h = l’altezza dell’immagine;
•	 caption = un eventuale titolo/commento asse-

gnato all’immagine.

In breve, si occupa di leggere i dati dell’immagine
provenienti dal client web, decodificarne il formato
jpeg, inviarli al display ed infine rispondere al mes-
saggio ricevuto con una conferma di ricezione. Non
male per poche linee di codice!
Vediamo in dettaglio, sempre con un occhio sullo
schema a blocchi, tutti gli elementi utilizzati nella
funzione.

FishGramRangeStream
Uno dei (numerosi) ostacoli riscontrati nello svi-
luppo dell’applicazione, anzi, il più grosso, è stato
quando ci siamo resi conto che il client HTTPS del
modulo ESP ha un buffer di ricezione limitato a
8 kB massimi; questo è stato voluto per contenere
l’uso della preziosa memoria RAM nel medesimo.
Ebbene, il server di Telegram, seguendo uno
standard più o meno consolidato, considera che
chi riceve utilizzi un buffer di 16 kbyte, quindi il
doppio, ed invia di conseguenza pacchetti HTTPS
codificati in blocchi di quella dimensione, quando
deve trasmettere grosse moli di dati.
Quindi, se richiediamo un file di dimensioni inferio-
ri a circa 7 kbyte tutto va bene, mentre per dimen-
sioni superiori il modulo WiFi va in errore e chiude
la connessione TCP senza ricevere nulla.
Questo scoglio stava per farci rinunciare all’applica-
zione quando, dopo una sana ricerca in rete, abbia-
mo “scoperto” che molti server web sono capaci
di “spezzettare” a richiesta gli invii di file; per la
precisione, sono in grado di inviare parti di file
delimitate da un inizio ed una fine.
Questo non per risolvere il nostro problema, ma per
poter permettere ai browser web di riprendere uno
download interrotto per motivi di connessione!
Il trucchetto si ottiene aggiungendo un header http
di questo tipo alla richiesta:

Range: byte=inizio-fine
dove ‘inizio’ e ‘fine’ sono due numeri che indicano
la parte di file che ci interessa.
Fortunatamente il server di Telegram supporta
questa estensione, quindi abbiamo scritto una classe
apposita, appunto la FishGramRangeStream, che
si occupa di “spezzettare” le richieste più grandi
di 4 kByte in “monconi” di quella dimensione, in
maniera trasparente.
Vediamo il relativo costruttore:

FishGramRangeStream::FishGramRangeStream(FishinoSecureClient &client,
const char *token, bool flashToken, const char *path, uint32_t size);

Per creare un’oggetto di questa classe occorre
passare il client, la token del nostro bot Telegram,
il percorso del file remoto da scaricare (relativo al
nostro bot) e la dimensione del file stesso, fornito da
Telegram insieme ai dati del messaggio.
Una volta creato l’oggetto per leggere i dati basta
richiamare la funzione read(), che si comporta esat-
tamente come la read() del client; lo spezzettamento
delle richieste avviene in modo completamente
trasparente, così come l’apertura e la chiusura del

10 Luglio / Agosto 2017 ~ Elettronica In

Elettronica In ~ Luglio / Agosto 2017 11

client e la richiesta del file stesso.
L’oggetto FishGramRangeStream viene comunque
creato dalla classe FishGram e passato alla nostra
funzione; a noi non resta altro che utilizzarlo per
leggere il file remoto.

WebStream
Un altro “stream” direte! A che serve ? Non bastava
il FishGramRangeStream?
Sviluppando una libreria software cerchiamo sem-
pre di curare due cose:
•	 la modularità;
•	 l’indipendenza da altre librerie, dove possibile.

Come vedremo in seguito, nell’analisi dettaglia-
ta del decoder JPEG, anche quest’ultimo lavora
leggendo un “flusso” (stream) di dati, decodi-
ficandoli al volo ed inviandoli al display (o ad
altro) senza memorizzare nulla.
Quindi ha la necessità di un oggetto di tipo
stream, “agganciabile” ai vari supporti che pos-
sono spaziare dalla memoria SD ad un client
Web.
La libreria FishinoJPEGDecoder contiene
quindi la definizione di una classe generica
FishinoJPEGDecoderStream utilizzata, ap-
punto, per leggere i dati da decodificare. Nella
libreria è già prevista una classe derivata da
quella in grado di leggere da un oggetto di tipo
File, quindi dalla scheda SD, ed un’altra classe
derivata per leggere le immagini memorizzate
direttamente nella memoria Flash.
Però a noi occorre un oggetto che faccia da

“ponte” tra un FishinoJPEGDecoderStream ed
un FishGramRangeStream; abbiamo quindi
creato, direttamente nello sketch, una piccola
classe WebStream in grado di assolvere tale
compito. Questa classe, derivata dalla Fishi-
noJPEGDecoderStream, è in grado di leggere
dati provenienti dalla FishGramRangeStream.
Riepilogando:
•	 il decoder JPEG (FishinoJPEGDecoder) ri-

chiama la WebStream per leggere i dati;
•	 la WebStream richiama la FishGramRange-

Stream per leggere i dati;
•	 la FishGramRangeStream si occupa di spez-

zettare le richieste ed inviarle a Telegram
tramite il client TCP.

Il tutto adesso dovrebbe essere (quasi) chiaro roto-
nando indietro di qualche pagina e osservando lo
schema a blocchi della nostra applicazione, propo-
sto nella Fig. 1.

IL DECODER JPEG, OVVERO LA LIBRERIA
FishinoJPEGDecoder
Lo sviluppo del decoder JPEG è stato la parte
più complessa dell’applicazione, anche perché
si è cercato di rendere la libreria il più possibile
generica e funzionante con la quasi totalità dei
JPEG disponibili. Diciamo subito che “non è tutta
farina del nostro sacco”, perché per lo sviluppo
siamo partiti da una piccola ma interessante libre-
ria open source reperibile in Internet al seguente
indirizzo:

http://elm-chan.org/fsw/tjpgd/00index.html

La libreria in oggetto è resa disponibile con una
licenza estremamente aperta (stile BSD, con in ag-
giunta la possibilità di evitare di indicare la licenza
quando si distribuisce il solo codice binario); è
quindi l’ideale per il nostro utilizzo, non ponendo
praticamente vincoli legali.

Listato 8
#include <FishinoGFX.h>
#include <FishinoILI9341.h>
#include<FishinoJPEGDecoder.h>
#include <SD.h>

#ifdef SDCS
	#define SD_CS SDCS
#else
	#define SD_CS 4
#endif

// funzione di callback
bool consume(JDR_RECT const &rec, uint8_t const *buf)
{
	t.setAddrWindow(rec.left, rec.top, rec.left + rec.width - 1, rec.top + rec.height - 1);
	uint16_t const *buf16 = (uint16_t const *)buf;
	FishinoILI9341.pushColors(rec.width * rec.height, buf16);
	return true;
}

// esempio di decoding JPEG da file su scheda SD
void setup()
{
	FishinoILI9341.begin();
	FishinoILI9341.fillScreen(ILI9341_BLUE);

	SD.begin(SD_CS);

	FishinoJPEGDecoderFileStream s;
	if(!s.open(“chri8s.jpg”))
		 DEBUG_PRINT(“Error opening file\n”);
	else
	{
		 FishinoJPEGDecoder decoder;
		 decoder.setConsumer(consume, 240, 320, JDR_COLOR565);
		 decoder.
		 	 setAutoCenter(JDR_CENTER_BOTH)
		 	 .setAutoScale(true)
		 	 .setRotation(JDR_ROT_AUTOCW)
		 ;
		 decoder.setProvider(s);
		 decoder.decode();
	}
}

12 Luglio / Agosto 2017 ~ Elettronica In

Elettronica In ~ Luglio / Agosto 2017 13

La libreria, pur essendo ben studiata e soprattutto
ben commentata, ha qualche limite che abbiamo
superato con il nostro codice:
•	 non gestisce un particolare formato di oversam-

pling delle componenti cromatiche (ce ne siamo
accorti tentando di decodificare alcuni file prove-
nienti da una macchina digitale e successivamen-
te ruotati);

•	 non è in grado di ruotare immagini decodificate;
•	 non è in grado di scalare immagini decodificate;
•	 è scritta in linguaggio C puro, scomodo da uti-

lizzare in ambiente Arduino, che, lo sappiamo, si
programma utilizzando un C personalizzato e
semplificato.

L’aggiunta del formato mancante è stata la parte
più semplice, come vedremo in seguito.
Rotazione e scaling delle immagini, per contro,
hanno comportato la riscrittura di una buona fetta
di codice originale, del quale abbiamo mantenuto
in pratica la parte di lettura degli header JPEG, la
decompressione Huffman e la DCT (Discrete Cosi-
ne Transformation, trasformata coseni inversa) che
fanno parte dell’algoritmo JPEG.
Già che c’eravamo, scrivendo la parte di scaling/
rotazione, abbiamo aggiunto un automatismo che
permette di adattare l’immagine ad una dimensione
di display specificata, calcolando rotazione e fattore
di scala in modo automatico.
Il tutto è stato, infine, incapsulato in una classe C++
facilmente utilizzabile in ambiente Arduino.
Vediamo per prima cosa l’utilizzo della libreria,
lasciando la descrizione teorica del formato JPEG e
del codice utilizzato alla seconda e ultima puntata
dell’articolo.

USO DEL DECODER
Iniziamo subito con uno spezzone di codice
(Listato 8) in grado di decodificare e visualizzare
un’immagine contenuta in un file su scheda SD,
spiegandone i vari punti.
Come abbiamo accennato in precedenza, anche
il nostro decoder lavora in modalità “streaming”,
per poter funzionare con una quantità minima
di memoria RAM. Questo significa che la libreria
legge man mano il file jpeg, lo decodifica “al volo” e
spedisce quanto decodificato al display, in blocchi
rettangolari di una certa dimensione.
In questo modo l’unica cosa da memorizzare
dell’immagine è il blocco rettangolare corrente, che
al massimo è di 16x16 pixel, ma può anche essere di
un singolo pixel.
Vediamo in dettaglio il codice nella setup(), tra-

lasciando le ovvie inizializzazioni di scheda SD e
display TFT: la creazione dell’oggetto decoder è:

FishinoJPEGDecoder decoder;

Poi si collega la funzione ‘consumer’:

decoder.setConsumer(consumeLine, 240, 320, JDR_COLOR565);

La funzione ‘consumer’ è una funzione di callback,
ovvero che viene chiamata automaticamente dalla
libreria quando questa ha “qualcosa di pronto”,
ovvero un blocco di pixel decodificato e pronto per
essere visualizzato.
Nel nostro caso la funzione si chiama ‘consume’, ed
è la seguente:

// funzione di callback
bool consume(JDR_RECT const &rec, uint8_t const *buf)
{
	 t.setAddrWindow(rec.left, rec.top, rec.left + rec.width - 1, rec.top + rec.height - 1);
	 uint16_t const *buf16 = (uint16_t const *)buf;
	 FishinoILI9341.pushColors(rec.width * rec.height, buf16);
	 return true;
}

La funzione riceve come parametri un “rettan-
golo”, ovvero le coordinate dei pixel sul display
che sono in arrivo, ed un buffer di byte conte-
nente i dati stessi dei pixel.
Il formato di questi dati dipende da quello che
abbiamo richiesto usando la funzione setConsu-
mer(); nel nostro caso abbiamo richiesto il for-
mato JDR_COLOR565, che è un formato a 16 bit
(due byte), composto da 5 bit per il colore rosso,
6 bit per il colore verde ed altri 5 bit per il colore
blu. Sono visualizzabili quindi 65.535 differenti

Tutti i componenti utilizzati in questo progetto
sono di facile reperibilità. Il master del circuito
stampato può essere scaricato dal sito della rivi-
sta così come il firmware utilizzato per program-
mare il microcontrollore PIC16F88. Il sensore ad
infrarossi IR38DM costa 2,50 Euro mentre l’in-
tegrato Microchip MCP3905A è disponibile 4,20
Euro.

Il materiale va richiesto a:
Futura Elettronica, Via Adige 11, 21013 Gallarate (VA)

Tel: 0331-799775 • http://www.futurashop.it

per il MATERIALE

Sostituire
testo

12 Luglio / Agosto 2017 ~ Elettronica In

Elettronica In ~ Luglio / Agosto 2017 13

g

colori/sfumature, che è quanto supportato dal
nostro display nella modalità prescelta.
La libreria supporta altri formati, per esempio
il JDR_COLOR888, che consiste in 8 bit per ogni
colore, il cosiddetto formato “True Color”, in
grado di rappresentare ben 16.777.216 colori
differenti (ossia in True Color, a 16,7 milioni di
colori) ossia le immagini con una profondità di
colore sufficiente a coprire tutte le sfumature
percettibili dall’occhio umano.
Abbiamo aggiunto inoltre altri formati meno
usati ma che potrebbero essere utili: un formato
ad 8 bit per pixel (JDR_COLOR323), abbastanza
crudo come qualità (solo 256 colori disponibili,
senza tabella di conversione), un formato con
256 livelli di grigio, JDR_GRAYSCALE e, per ul-
timo, un formato in bianco/nero con un bit per
pixel, nel caso si volesse usare la libreria con un
display grafico monocromatico. Tornando alla
funzione consumer, questa si limita ad imposta-
re una “finestra di lavoro” sul display:

t.setAddrWindow(rec.left, rec.top, rec.left + rec.width - 1, rec.top + rec.height - 1);

e a copiarci i pixel :

	 uint16_t const *buf16 = (uint16_t const *)buf;
	 FishinoILI9341.pushColors(rec.width * rec.height, buf16);

Nella nostra setup(), una volta impostata la fun-
zione ‘consume’ è necessario specificare qualche
parametro di conversione:

		 decoder.
			 setAutoCenter(JDR_CENTER_BOTH)
			 .setAutoScale(true)
			 .setRotation(JDR_ROT_AUTOCW)
			 ;

Qui chiediamo al nostro decoder di centrare
l’immagine sia orizzontalmente che verticalmente
(JDR_CENTER_BOTH), di scalarla automaticamen-
te (setAutoScale(true)) e di ruotarla automaticamen-
te, se necessario, in modo da sfruttare al massimo il
display, scegliendo il senso orario in caso di rotazio-
ne (JDR_ROT_AUTOCW).
Per ultimo, impostiamo il “fornitore” di dati, ov-
vero lo stream da cui provengono i medesimi. In
questo caso, leggendo da SD, abbiamo creato uno
stream del tipo FishinoJPEGDecoderFileStream,
in grado, appunto, di lavorare con file. Nel nostro
applicativo PhotoFish, invece, abbiamo utilizzato
un oggetto stream in grado di leggere direttamente
i dati da un client web. L’impostazione del provider
avviene con la linea seguente:

		 decoder.setProvider(s);

Qui per brevità non abbiamo controllato il codice
di errore ritornato dalla funzione setProvider() che,
se differente da JDR_OK, indica un errore nei dati
dell’immagine. Impostando il provider, infatti, la
libreria inizia l’analisi dell’immagine, ne estrae le
dimensioni, il tipo di compressione, eccetera.
Per ultimo, lanciamo la decodifica:

		 decoder.decode();

Questa semplice linea avvia la decodifica; la libreria
inizierà a leggere i dati dal “provider”, li elaborerà,
e man mano che avrà pixel da visualizzare eseguirà
le chiamate necessarie alla ‘consumer’, fino ad esau-
rimento immagine. Anche questa funzione ritorna
un codice che, se è diverso da JDR_OK, indica un
qualche tipo di errore.

CONCLUSIONI
Bene, terminiamo qui la prima parte della trattazio-
ne, nella quale vi abbiamo esposto l’applicazione
PhotoFish e le librerie utilizzate nella scrittura dello
sketch allo scopo di gestire i messaggi di Telegram
e visualizzare le immagini sul display TFT. Avete
così avuto modo di scoprire come, con risorse di
calcolo e di memoria relativamente limitate come
quelle delle board Arduino/Fishino, è possibile
interagire con Telegram per ricevere e mostrare
immagini su uno shield TFT.
Nella prossima puntata, conclusiva del progetto,
approfondiremo il discorso sui formati di immagine
e sulle compressioni video, nonché sulla codifica e
la decodifica. Lì vi troverete un approfondimento
sull’elaborazione delle immagini, come la rotazio-
ne, lo scaling e altri concetti accennati nelle pagine
precedenti; spiegheremo bene anche come avviene
la compressione JPEG, molto utilizzata nei contenu-
ti web.
Per utilizzare il progetto, in questa prima puntata
vi abbiamo fornito le nozioni di base, che potrete
sfruttare da subito.

