 \Versione wireless delle cornici digitali
per riprodurre immagini ricevute da

WiFi grazie a Fishino e allo shield TFT.
Dopo 'hardware e le librerie, facciamo
un po’ di didattica sulla gestione delle
immagini. Seconda e ultima puntata.

K \ a abbiamo avuto
modo di introdurvi il
progetto, che utilizzan-
do una board Fishino
(tipicamente, non ne-
cessariamente, una 32
bit) riceve tramite link
wireless file d’imma-
gine che gli inviamo
tramite il servizio di
instant messaging Te-
legram e li visualizza
su un display LCD TFT

_PHoTOFISH
DfGITAL

~ montato sull’apposito

Gadget

shield TFT pubblicato
nel fascicolo di giugno
SCOrS0.

Vi abbiamo descritto
I’hardware occorren-
te e il modo in cui &
stato programmato per
svolgere il compito
affidatogli, dettaglian-
do le librerie create allo
scopo e facendo cenno
alla decodifica JPEG,
implementata nello

- ELETTRONICA IN ~ Settembre 2017 1

sketch e fondamentale per la visualizzazione delle
immagini. Abbiamo anche spiegato che, per ragioni
di occupazione di memoria, le immagini ricevute
vengono decodificate al volo, spezzettate e inviate
al display grafico una porzione alla volta, cosi da
avere un buffer di dimensioni ridotte.

Spiegata la decodifica JPEG e come avviene nel
sistema, approfondiamo la materia con un’utile
disamina sui formati d’immagine e sulla compres-
sione, in particolare quella JPEG.

UN PO’ DI TEORIA

Per capire come mai il formato JPEG sia cosi effi-
ciente ma anche piuttosto pesante da decodificare,
vediamo di spiegarne il funzionamento con qualche
schema a blocchi; iniziamo dalla conversione dello
spazio colore e dalla segmentazione (Fig. 1).
L’immagine viene per prima cosa convertita dallo
spazio colore RGB ad uno spazio colore differente,
composto da luminanza (Y) e da due valori di cro-
minanza (Cr e Cb), che corrispondono pii1 0 meno a
tinta e saturazione colore.

Questo viene fatto perché I’occhio umano percepi-
sce la luminosita ed i colori attraverso due recettori
differenti (bastoncelli e coni); i bastoncelli risul-
tano molto piu sensibili, ma non sono in grado di
differenziare i colori dell'immagine, ma solo i valori
di luminosita, mentre i coni sono meno sensibili

ma riescono a distinguere i colori. Ne consegue che
I'occhio risulta molto piu1 sensibile alle variazioni ed
agli errori sulla luminosita di un pixel piuttosto che
alle sue variazioni cromatiche.

Passando allo spazio di colore YCrCb separiamo,
appunto, i valori di luminosita dalle componenti
cromatiche, che possono seguire vie diverse nel
percorso di compressione. Come vedremo, potremo
infatti comprimere maggiormente o addirittura
scartare alcuni valori di crominanza senza nessun

IMMAGINE
RGB

IMMAGINE
YCrC

effetto visibile o quasi.

L’'immagine viene quindi spezzettata in blocchi da
8x8 pixel, sui quali verranno concentrate le succes-
sive operazioni di compressione (Fig. 1). Fin qui,
infatti, I'immagine e inalterata; la conversione dello
spazio colore e un procedimento reversibile senza
perdita di qualita (salvo eventuali errori numerici).
Questi blocchi sono detti MCU, Minimum Coded
Unit, ovvero le piu piccole unita codificate.

Ogni blocco viene quindi processato per proprio
conto, indipendentemente dagli altri.
Successivamente le componenti di luminanza e
crominanza di un singolo blocco vengono separate
ed iniziano a seguire vie diverse (Fig. 2).

TRASFORMATA DISCRETA DEL COSENO

Come abbiamo detto sopra, finora i pixel sono
rimasti invariati: ogni tripletta di byte nelle nostre
MCU rappresentano un pixel sullo schermo, poco
importa che usiamo unita di misura differenti (RGB
0 YCrCb). Abbiamo sempre tre valori numerici per
ogni pixel.

Se guardiamo un’immagine reale notiamo subito
alcune caratteristiche, la prima delle quali e che
normalmente 'immagine varia poco tra un pixel

e quelli immediatamente adiacenti. E raro trovare
grossi sbalzi di luminosita, e ancor meno di colore,
tra due pixel “vicini”.

Ma come possiamo sfruttare questa cosa? Ebbene,
immaginiamo di convertire tutto il blocco di 8x8
pixel, la nostra MCU, facendo una media tra tutti

i valori di luminanza e crominanza dei pixel. In
pratica, facciamo un grosso “pixelone” mediando
tutti i colori dei 64 pixel. Ovviamente otterremo
un’immagine molto degradata ma quasi sempre ri-
conoscibile. Se invece di creare un unico “pixelone”
ne facciamo 4, ognuno ottenuto facendo la media di
4x4 = 16 pixel, otterremo gia un risultato migliore.

IMMAGINE

SEGMENTATA

HMCU [l

CONVERSIONE

|SEGMENTAZIONE | |

SPAZIO COLORE

'BLOCCHISX8 PIX. [I

Fig. 1 - Spazio colore e segmentazione.

2 Settembre 2017 ~ ELETTRONICA IN

Cosi via, fino a scendere a 2x2 pixel mediati fino a
1 singolo pixel, che poi & I'immagine originale con
la qualita inalterata. Ora, proviamo a procedere in
questo modo:

- facciamo un immagine con il “pixelone” iniziale;

- ovvero la media di tutti i pixel;

- ne sovrapponiamo un’altra con 4 blocchi conte-
nenti ciascuno le differenze tra la media dei 4x4=16
pixel di prima ed il “pixelone”, e via di seguito.

In pratica, ricostruiamo I'immagine iniziale sovrap-
ponendo varie gradazioni di “qualita”. E intuitivo
che, facendo bene le cose, si ottiene ancora I'imma-
gine originale. Abbiamo quindi separato I'imma-
gine in una sovrapposizione di immagini parziali,
dalla piu grossolana fino ai dettagli piu fini.

In questa separazione, la prima immagine rappre-
senta il valore medio su tutti i 64 pixel, ovvero, in
termini “elettronici”, la componente “DC”, ovvero
la “corrente continua” del blocco.

I secondo livello rappresenta le variazioni dei punti
pit distanti (stiamo lavorando su 4x4 pixel medi,
ricordiamo) dalla media, quindi possiamo conside-
rarla come una componente in “bassa frequenza”
dal punto di vista elettronico.

Restringendo man mano, le varie sotto-immagini
rappresentano dettagli sempre pil1 fini nel blocco,
quindi componenti a frequenza maggiore (le varia-
zioni di intensita tra pixel sempre piu vicini).
Abbiamo trasformato quindi I'immagine in una
sovrapposizione di “onde” a frequenze diverse,
ognuna delle quali rappresenta dettagli sempre piit
precisi dell'immagine del blocco.

Questo lavoro viene fatto tramite una trasformazio-
ne matematica dal dominio spaziale a quello delle
frequenze. Questa trasformazione si chiama DCT
(Trasformata Discreta del Coseno) ed ¢ simile alla

Fig. 2 - Separazione Cr
componenti immagine. i
|

pilt nota trasformata di Fourier (FT, o FFT), e lavora
su numeri reali e non su numeri complessi, come
invece la FFT.

Sorvoliamo sulla trattazione completa, che e piut-
tosto complicata; basti sapere che i 64 valori del
nostro blocco di pixel, dopo la trasformazione non
rappresentano piu i singoli punti, ma dei valori di
“frequenza” via-via sempre piu alta; il primo valore
(“in alto a sinistra”, nel blocco) per intenderci,
rappresenta il valore DC, ovvero la media di tutti i
64 pixel; i successivi rappresentano delle variazioni
sempre pilt dettagliate. La Fig. 3 pud dare I'idea di
come funziona la cosa.

Come si nota, il punto in alto a sinistra rappresenta
la parte pit1 grossolana della MCU, mentre spostan-
dosi man-mano verso destra e verso il basso si scen-
de sempre piu in dettaglio. Sovrapponendo tutte le
immagini otterremo ancora I'immagine originale.
Qualcuno si stara chiedendo: a che pro? Abbiamo
sempre 64 valori, dai 64 di partenza, quindi dove
sta la compressione? Semplice: ancora da nessuna
parte! Invertendo la trasformazione otteniamo an-
cora I'immagine di partenza, senza alcuna perdita
di qualita.

Ma, con una rappresentazione di questo tipo, le
cose iniziano a farsi interessanti; per esempio, cosa
succede se scartiamo qualche valore vicino all’ango-
lo in basso a destra, e poi facciamo la trasformazio-
ne inversa? Semplicemente, otterremo un’immagine
leggermente degradata. Quanto viene degradata
dipende da quanti e quali valori scartiamo. Quindi
se, per esempio, dei 64 valori ne scartiamo bru-

Fig. 3 - Variazioni di grigio.

-

= ELETTRONICA IN - Settembre 2017 3

talmente 32, otterremo un’immagine meno nitida
(ricordatevi che i valori pil1 vicini all’angolo in
basso a destra rappresentano i dettagli piu fini!), ma
sempre riconoscibile.

I1 “trucco” sta proprio qui: facendo una DCT, scar-
tando alcuni valori e poi invertendo la trasforma-
zione, otterremo un’immagine somigliante a quella
di partenza, solo meno nitida; la perdita di nitidez-
za dipende da come scartiamo i valori.

In realta i valori non vengono proprio scartati, ma
quantizzati; per esempio, potremmo decidere che
per i valori vicini all’angolo in basso a destra (i
dettagli fini) invece di usare 1 byte possiamo rap-
presentarli con 1-2-3-4 bit, risparmiando memoria,
utilizzando delle tabelle di conversione dette “tabel-
le di quantizzazione” (quantization tables).

Sono queste tabelle che influenzano in gran parte
sia la perdita di qualita nella compressione sia la
riduzione di dimensione del file.

Ok, abbiamo trasformato il nostro blocchetto di pi-
xel (MCU) con una DCT, abbiamo ottenuto 64 valori
numerici, li abbiamo “semplificati”, ne abbiamo
scartato qualcuno. Che ci rimane da fare, per com-
primere ulteriormente il file? Ebbene, per prima cosa
ricordiamo che le immagini reali variano lentamente,
senza bruschi salti.

Quindi, ogni blocco avra, per esempio, una lumino-
sita poco diversa dal precedente. Invece di conside-
rare la sua luminosita assoluta, quindi, possiamo
salvare solo la differenza di luminosita rispetto al
blocco precedente, che sara presumibilmente un
valore “piccolo”, quindi codificabile con un numero

AC,

DC/

Y

v
i /
i

F
#

N\

v

ACgs

Fig. 4 - Scansione a zig-zag.

minore di bit, come vedremo in seguito. Quindj, il
valore del primo coefficiente, la componente DC,
verra trasformato nella differenza con il blocco
precedente.

Questo procedimento si chiama DPCM (Differential
Pulse Code Modulation) e viene utilizzato anche
nella compressione di flussi audio. I restanti 63 valo-
ri saranno stati quantizzati, quindi ridotti in numero
di bit. Man mano che ci avviciniamo all’angolo in
basso a destra, questi valori conterranno un nu-
mero sempre maggiore di zeri ed il numero di zeri
aumentera con I'aumentare della grossolanita della
quantizzazione.

Invece di memorizzare tutti gli zeri e gli uni come
d’abitudine, converra quindi contare gli zeri e me-
morizzarne il numero prima dei valori non nulli. Per
esempio, se abbiamo i seguenti valori:

0002350000000012800000000012 (totale 23 byte)
possiamo memorizzarli in questo modo:

32358128 9 12 (totale 6 byte)

che significa 3 zeri, 235, 8 zeri, 128, 9 zeri, 12. Come

vedete, abbiamo risparmiato un bel po” di byte, gra-
zie al fatto che molti numeri sono a zero!

Questo metodo, applicato ai soli 63 coefficienti AC,

viene chiamato RLE (Run Length Encoding) e viene
utilizzato anche nella compressione di file generici.

ZIGZAG SCAN

Abbiamo detto che nei 63 valori il “numero di zeri”
aumenta avvicinandoci all’angolo in basso a destra;
conviene quindi, prima di comprimerli con l'algo-
ritmo RLE, ordinarli in modo da avere gli zeri il piu1
possibile raggruppati, e precisamente in coda al
blocco.

Per questo si utilizza il procedimento di “zigzag
scan”, visibile in Fig. 4.

Fig. 5 - Subsampling
orizzontale 4:2:2.

SUBSAMPLING 2x1 (4:2:2)

SEQUENZA CODIFICATA:

& Settembre 2017 ~ ELETTRONICA IN

ALTRE POSSIBILITA DI COMPRESSIONE

Finora abbiamo sfruttato i 3 componenti colore allo
stesso modo, anche se, probabilmente, con tabelle
di quantizzazione diverse per luminosita e compo-
nenti cromatiche. Abbiamo inoltre “compresso” le
componenti DC dei vari blocchi prendendone la
differenza con i blocchi precedenti, e codificato le
componenti AC dei blocchi in modo da sfruttare
I’abbondanza di zeri presenti.

Finito? Ancora no! Possiamo fare altre due cose, per
ridurre ulteriormente la dimensione del file; una
con ulteriore piccola perdita di qualita, 1’altra senza.

SUBSAMPLING

Abbiamo detto all’inizio che 1’occhio umano e
molto meno sensibile ai colori, ed alle variazioni dei
medesimi, rispetto a quanto non sia sensibile alle
variazioni di intensita luminosa.

Possiamo sfruttare ulteriormente questo fatto (an-
che se forse non era chiarissimo, tramite le tabelle di
quantizzazione differenziate I’abbiamo gia parzial-
mente fatto prima) raggruppando le componenti
cromatiche di MCU adiacenti; per esempio, possia-
mo prendere 2 blocchi di luminosita ed un singolo
blocco di crominanza (2 in realta, visto che le com-
ponenti sono 2!) facendo la media delle crominanze
di due MCU adiacenti. Questo pubd essere fatto in
orizzontale o in verticale. Oppure possiamo addirit-
tura mediare la crominanza su quattro blocchi (2x2)
e quindi prendere quattro blocchi di luminanza per
uno di crominanza.

Nella Fig. 5 vedete la rappresentazione del subsam-
pling 4:2:2 orizzontale.

Come si nota, invece di 6 blocchi di valori ne abbia-

i Vi
F !
£ r
/
/ /
/! !
/ /
/! Fi
! !
/! £
/! ; Fd /
/ ’ !
.r"Jr /f ’
/ SUBSAMPLING 2x2 (4:2:0
y, / “zo
.(; // ’/
Y / !
/! [4/
4 f’ 4 ; SEQUENZA CODIFICATA:
FFEFER R RN =5 s 1 £aiacas issaaasi easasg; fspasas
Y00 Y10 / Yoo fif| Y10 Y01 Y11 cb il cr |
} / EEEEEES(iNSEEEE:|IREESEEE|IESSEEEE|iSmEEEE:jsEEEEEEE
/ e e e B e
)
ra
Y01 /

Fig. 6 - Subsampling orizzontale 4:2:0.

mo presi solo 4, con un risparmio del 30%.

Se volessimo fare un subsampling piu spinto, un
4:2:0 (2x2), avremmo la situazione in Fig. 7.

In questo caso, al posto di 12 blocchi di valori ne
abbiamo presi 6, con un risparmio del 50%.

Il subsampling permette un notevole risparmio di
dimensioni dell'immagine con perdite di qualita
quasi sempre trascurabili.

La nostra libreria supporta quattro modalita di
subsampling: 4:4:4 (no subsampling), 4:2:2 orizzon-
tale, 4:2:2 verticale (mancava nella libreria originale,
e si ha spesso in immagini ruotate), e 4:2:0.

CODIFICA HUFFMAN

Per chi aveva sperato che fossimo giunti alla fine...
brutte notizie! Resta 1'ultimo livello di compressio-
ne presente nei file JPEG, che e una compressione
cosiddetta lossless, ovvero senza perdita di infor-
mazioni: la codifica Huffman.

La codifica Huffman si basa sul fatto che i numeri
che descrivono il mondo reale non sono proprio
casuali, ma tendono ad avere una certa regolarita.
La codifica entropica (Entropy coding, in inglese)
sfrutta questo fatto, utilizzando non pit1 un codice
a lunghezza fissa di byte, ma un codice a lunghezza
variabile, assegnando ai numeri piu frequenti dei
codici piu brevi.

Come funziona? Supponiamo di dover codificare
un testo contenente le seguenti lettere:

G,0O,P, H, E, R, S e <spazio>

Si tratta di 8 caratteri, quindi con una codifica nor-
male (lunghezza costante di bit) servono 3 bit (23 =
8!1); possiamo fare la Tabella 1.

Se vogliamo codificare la frase “GO GO GO-
PHERS”, scriviamo:

000 001 111 000 001 111 000 001 010 011 100 101 110

Utilizzando quindi 39 bit in totale. Se guardiamo
bene la frase pero vediamo che alcune lettere appa-

000
001
010
001
100
101

S 110
<SPAZIO> 111

T mMm I U O O

Tabella 1

.

ELETTRONICA IN ~ Settembre 2017 S

iono piu frequentemente di altre; la G e la O appaio-
no 3 volte ciascuna, lo spazio 2 volte, mentre le altre
lettere solo una volta. Come possiamo sfruttare
questa regolarita? Scegliamo un codice differente,
questa volta a lunghezza variabile, utilizzando un
minor numero di bit per i simboli pil1 frequenti
(Tabella 2).

Con questa codifica la nostra frase viene rappresen-
tata da:

1011 0011011 001 10 11 0100 0101 0110 0111 000

Ovvero 37 bit in totale, con un risparmio di 2/39,
ovvero di circa un ventesimo. Ovviamente 1'esem-
pio fatto e piccolo, quindi lo e anche il risparmio. In
casi reali il risparmio & notevole.

Ma come si fa a codificare e decodificare una serie
di dati in questo modo?

La cosa non e semplicissima! Per prima cosa occorre,
ovviamente, stabilire una “scaletta” dei numeri

che appaiono piu di frequente, in modo da poter
assegnare loro codici pil1 brevi. In alcuni casi la
frequenza e gia nota, come per esempio per dei testi
in una specifica lingua, dove esistono statistiche ben
precise; in altri casi occorre analizzare i dati, o per
lo meno una quantita sufficiente di dati, per creare
la tabella.

Questo e uno degli svantaggi della codifica entro-
pica: serve un’analisi preventiva dei dati, e questa
puo essere lenta. Successivamente serve un algo-
ritmo che permetta di trovare le sequenze ottimali
di bit per i miei dati, ed & questo l'algoritmo di
Huffman, che e piuttosto complesso e su cui sorvo-
liamo.

Basti sapere che si basa su alberi binari, ed e in
grado di trovare una soluzione ottimale al proble-
ma, tenendo ovviamente conto che i dati vanno poi
anche decodificati.

Per esempio, nel nostro caso abbiamo assegnato alla
G il valore 10; ovviamente NESSUN altro carattere,
anche se con sequenza piu lunga, potra iniziare con
10, altrimenti non sapremmo come decodificarlo! Lo

G 10
0 11
P 0100
H 0101
E 0110
R 0111
S 000
<SPAZIO> 001

Tabella 2

stesso vale per la O (11). Come potete vedere dalla
tabella, infatti, nessun altro carattere inizia né con
10 né con 11; la S e lo <spazio> iniziano, per esem-
pio, con 00 e finiscono rispettivamente con 0 e con
1, ottenendo i 2 codici 000 e 001. Anche in questo
caso, NESSUN altro carattere dovra iniziare con 000
o con 001, ed infatti i rimanenti iniziano tutti con 01
(prefisso libero!) e sono obbligati ad utilizzare 4 bit
ciascuno.

Quando andremo a rileggere i bit per ricostruire le
nostre lettere potremo quindi farlo univocamente:
se leggiamo 10 sappiamo con certezza che si tratta
di una G; se leggiamo 00 sappiamo che ci serve un
altro bit per ricavare il carattere (S o spazio), mentre
se leggiamo 01 sappiamo che ci servono altri 2 bit
per capire di cosa si tratta.

L’altro svantaggio della codifica Huffman (ed in
genere di tutte le codifiche a lunghezza variabile)

¢ che occorre lavorare a livello di Bit, estraendo

dal flusso bit per bit ed analizzandolo, cosa in cui
gli elaboratori non sono particolarmente efficien-

ti. Inoltre, se ci servisse, per esempio, solo il terzo
carattere del testo, saremo comunque obbligati a
leggere anche i 2 precedenti, visto che e I'unico
modo che abbiamo per sapere dove inizia quello
che ci interessa.

E quest’ultimo il piu grosso svantaggio della
codifica JPEG che ci impedisce, per esempio, di
saltare parti di immagine che non ci interessano.

Se di un’immagine da 2000x2000 pixel vogliamo
estrarre un quadratino di 100x100 pixel saremo
comunque obbligati a leggere almeno TUTTI i pixel
che precedono quelli che ci interessano, e la cosa la
potete vedere utilizzando la nostra applicazione su
immagini molto grandi.

I JPEG PROGRESSIVI

Per “facilitare” la visualizzazione sui browser di
immagini molto grandi trasferite via internet, so-
prattutto con connessioni lente com’erano le prime
disponibili, qualcuno ha pensato bene di estendere
il formato iniziale con una modalita progressiva.
Di cosa si tratta? Semplicemente, un formato che
“descrive” I'immagine con livelli di qualita bassi

ad inizio file, migliorandoli successivamente man
mano che si avanza nella lettura del medesimo.

Il vantaggio, innegabile, & che il browser e in grado
di visualizzare un’immagine approssimativa anche
solo leggendo una piccola parte dei dati disponibili,
cosa che pub far piacere a chi sta visualizzando un
sito particolarmente lento.

E quasi sempre preferibile vedere delle immagini
sfuocate che migliorano pian piano piuttosto che

6 Settembre 2017 ~ ELETTRONICA IN

attendere secondi/decine di secondi senza vedere
nulla.

Il grosso svantaggio e che quel tipo di file per poter
essere decodificato a velocita accettabili richiede la
memorizzazione dell’intera immagine durante la
lettura. Quindji, se sto scaricando un’immagine da
1000x1000 pixel, mi ritrovo a dover memorizzare

3 megabyte di dati durante la ricezione. Per un
Personal Computer moderno si tratta di un valore
tranquillamente accettabile, ma non per un micro-
controller, ovviamente.

L’alternativa possibile e quella di rileggere conti-
nuamente il file pit1 volte per ogni blocco (MCU) da
decodificare. La cosa & possibile, anche se molto len-
ta, se il file & per esempio su una scheda SD locale;
diventa improponibile se il file & remoto, visto che
sarebbe necessario richiederlo decine/centinaia/
migliaia di volte al server durante la decodifica.
Un’altra alternativa, praticabile ma estremamente
macchinosa, e leggere una prima volta il file, creare
una mappa dei dati su una SD (ovvero, I'inizio
fisico di ogni MCU nelle sue versioni a definizioni
migliorate), e poi rileggerlo in modalita random
(saltellando qua e la) in modo da poter decodificare
completamente ogni MCU per poterla visualizzare.
Quest’alternativa e certamente praticabile in caso
di file locali, un po” meno per file remoti, per poter
leggere i quali in modalita random servono apposi-
te estensioni HTTP non sempre disponibili.
L’ultima alternativa possibile su un microcontroller
e utilizzare la scheda SD come un’estensione della
RAM dove parcheggiare i dati parziali dell'immagi-
ne decodificata. Sembrerebbe una buona soluzione,
se non fosse che le SD sono molto piu lente della
RAM e, soprattutto, hanno un limite di scritture
dopo il quale si guastano.

Viste le problematiche e la scarsa diffusione dei
JPEG in formato progressivo abbiamo deciso di non
supportarli nella nostra libreria, come peraltro nella
maggior parte di librerie disponibili sui microcon-
troller.

JPEG E JFIF

JPEG e l'acronimo per la tipologia di compressio-
ne dei dati-immagine; lo standard non descrive il
formato di file che contiene le immagini JPEG ma
solo il modo di comprimerle, che abbiamo visto in
dettaglio nei paragrafi precedenti. Del formato dei
file si occupa lo standard JFIF (JPEG File Interchan-
ge Format), che specifica come dev’essere composto
un file .jpg.

11 file e composto da vari record che contengono le
dimensioni dell'immagine, la risoluzione, una serie

di byte necessari per riconoscere il file, alcuni dati
opzionali ed, infine, 'immagine vera e propria.
Fornire ulteriori dettagli risulterebbe lungo e noioso,
tenendo conto che questi possono essere trovati
facilmente in rete. La nostra libreria & comunque in
grado di interpretarli correttamente ed estrarne le
informazioni necessarie.

LA DECODIFICA DEI FILE JPEG

Ed eccoci arrivati (quasi) alla fine!

Per decodificare un file JPEG occorre procedere a

ritroso rispetto a quanto elencato in precedenza,

ovVero:

* Leggere le caratteristiche dell'immagine dagli
appositi campi nel file; in particolare servono il
numero di pixel, il tipo di subsampling e la pro-
fondita di colore (i JPEG supportano anche una
modalita monocromatica, da noi non gestita, con
256 livelli di grigio, un byte per pixel).

* Controllare che il file sia di tipo supportato; come
detto, non gestiamo la modalita monocromatica
né i JPEG progressivi

* Leggere le tabelle usate nella codifica Huffman
ed utilizzarle per ripristinare i dati compressi,
MCU per MCU

¢ Invertire il processo DPCM sui valori DC delle
MCU (tradotto : il primo valore di ogni MCU, la
componente media di luminanza e crominanza, e
memorizzato come differenza con la MCU prece-
dente, e la cosa va invertita!)

® De-comprimere i restanti 63 valori delle MCU,
che erano stati compressi con 1’algoritmo RLE

* Eseguire la trasformata dei coseni inversa (IDCT)
per ripristinare i valori YCbCr delle MCU, ovve-
ro i valori di luminanza e crominanza dei singoli
pixel

¢ Eventualmente integrare i valori mancanti di
crominanza, se si e scelta una compressione con
subsampling

ROTAZIONE DI 90° IN SENSO ORARIO

Fig. 7 - Rotazione d’immagine.

-

ELETTRONICA IN ~ Settembre 2017 7

e Riconvertire il tutto dal formato YCbCr nel for-
mato RGB

e Convertirlo nel formato in uscita, se diverso da
RGB (ad esempio nel formato a 16 bit 565)

* Inviare la MCU al display.

ROTAZIONE E SCALING

Solitamente, in un PC, rotazione e scaling sono
indipendenti dalla decompressione JPEG; prima
I'immagine viene decompressa in memoria e suc-
cessivamente viene scalata/ruotata per adattarla

al display. Come visto in precedenza questo non

e possibile farlo su un microcontroller, che non
permette la memorizzazione dell’intera immagine
decompressa.

Come fare, quindi? Un’immagine fuori scala serve a
poco: se abbiamo un’immagine da 1000x1000 pixel
e la visualizziamo su un display come il nostro da
240x320 pixel ne vedremo solo una piccola, insigni-
ficante parte.

La stessa cosa per la rotazione: se 'immagine e piu
larga che alta, e la visualizziamo sul nostro display
messo “in piedi” lo sfrutteremo male.

La soluzione anche qui & operare in modalita stre-
aming, quindi eseguire scala e rotazione “al volo”
man mano che arrivano i dati.

ROTAZIONE

Iniziamo dalla rotazione che, se fatta per multipli di
90 gradi, e concettualmente molto semplice (Fig. 8).
Qui e rappresentata una MCU di 4 pixel, per sem-
plicita, posizionata in alto a sinistra sull'immagine.
Come si nota, occorre ruotare le MCU attorno a

se stesse e spostarle sul display. In questo caso la
rotazione avviene cambiando la sequenza dei pixel
da 1-2-3-4 a 3-1-4-2, mentre l'origine della MCU
sull'immagine va traslata per portarla alla posizio-
ne desiderata.

Si tratta, in sintesi, di modificare I'ordine dei byte
nel buffer contenente la MCU e nel ridefinirne la
sua posizione sul display, in base all’angolo di
rotazione. La modifica dell’ordine dei byte nella
MCU dipende solo dal tipo di rotazione, mentre lo

1:1 1:2 1:8

1 PIXEL

64 PIXEL 16 PIXEL
|]]

Fig. 8 - Scaling d’immagine.

spostamento sull'immagine dipende sia dal tipo di
rotazione che dalla posizione originale della MCU.

SCALING

Lo scaling, o ridimensionamento dell'immagine

risulta decisamente pil1 complesso. Innanzitutto,

visto che le immagini solitamente disponibili hanno
dimensioni piu1 grandi del nostro display, evitiamo

I'ingrandimento, che comporta particolari proble-

matiche che vedremo pil1 avanti.

Ci limiteremo quindi solo alla riduzione dell’imma-

gine. Vista la particolarita della compressione JPEG,

ovvero il fatto che e realizzata per unita minime di

immagine (MCU) composte da 8x8 pixel, una prima

idea e quella di scalarle per multipli di 2, con un
massimo di 1/8. Questo puo avvenire semplice-
mente raggruppando i pixel nellaMCUa2a2,4a

4 oppure tutti e 8, facendone la media di intensita e

colori (Fig. 8).

Questo tipo di ridimensionamento risulta sem-

plificato, appunto, dal fatto che la MCU ha come

dimensioni una potenza di 2; il vantaggio ulteriore
scalando sui pixel della MCU e che si fanno le me-
die dei valori senza “buttar via” nulla, e 'immagine
risultante e senza difetti palesi.

Chiaramente, a meno di non avere una fortuna

incredibile, e difficilissimo che I'immagine originale,

scalata di una potenza di 2, si adatti perfettamente
al nostro display.

Se scalando in questo modo ottenessimo anche solo

una dimensione molto vicina a quella del display,

potremmo fermarci ed utilizzarla, al prezzo di un
minor sfruttamento dello schermo oppure al legge-
ro ritaglio delle parti perimetrali dell'immagine, ma
anche qui si tratterebbe di casi piuttosto rari.

Poiché vogliamo ottenere la perfezione (!) procedia-

mo quindi nel modo seguente :

e utilizziamo per prima cosa la scala grossolana
per multipli di 2, avvicinandoci il pit1 possibile
IN ECCESSO alla dimensione voluta. Ovvero,
dividiamo x 2 i lati dell'immagine il piu1 possibi-
le fino ad ottenere un’immagine vicina a quella
desiderata, ma piu grande, NON piu piccola.
Ovviamente il massimo del fattore di scala & 8,
lavorando sulle MCU da 8x8 pixel

e Ottenuta la scalatura grezza, utilizziamo un algo-
ritmo per eliminare righe e colonne “ogni tanto”,
in modo da ottenere la dimensione esatta con il
minor degrado di qualita possibile.

Ma come facciamo a decidere quali righe/colonne

eliminare ?

Se I'immagine da ottenere fosse un sottomulti-

plo “semplice” di quella originale (esempio, 2/3),

8 Settembre 2017 ~ ELETTRONICA IN

ovvero con un minimo comune multiplo piccolo
rispetto alla dimensione dell'immagine, bastereb-
be saltare una riga/colonna ogni numero intero

di righe colonne; nel caso dell’esempio, 1 ogni 3.

Il sistema funziona se la frazione ha nominatore

e denominatore piccoli, come in questo caso. Se
avessimo un rapporto del tipo 1245/1346 le cose si
complicherebbero.

Anche qui, purtroppo, & meglio non contare sulla
fortuna! Solitamente dimensione di partenza e
finale sono tutt’altro che multipli semplici, quindi il
sistema non va bene!

L'ALGORITMO DI BRESENHAM

Chi mastica un po’ di grafica applicata agli elabo-
ratori conoscera questo nome, piuttosto famoso, e
probabilmente si stara chiedendo “Ma Bresenham
non serve per disegnare linee???”

Si, si utilizza proprio per quello, e non solo per
disegnare linee ma anche altre curve geometriche.
Che ce ne facciamo quindi nel ridimensionamento
delle immagini? Per capirlo, guardiamo la Fig. 10,
che rappresenta un segmento di retta, disegnato
con l'accortezza che 1’angolo tra questo e 'asse X sia
minore di 45 gradi.

Se consideriamo l’asse X come il lato dell'immagine
originale, e ’asse Y come il lato dell'immagine sca-
lata, vediamo che il segmento in rosso rappresenta
la corrispondenza tra i pixel della prima con quelli
della seconda; partendo dall’origine (corrispon-
dente all’estremo sinistro di entrambe le immagini),
spostandomi verso destra, ovvero lungo i pixel
dell’immagine originale, in verticale otteniamo i
pixel dell'immagine scalata. Alla fine, portandoci
sulla larghezza totale dell'immagine originale, in
verticale otteniamo la dimensione corrispondente
scalata.

ASSE Y

DIMENSIONE ORIGINALE

A\
[
-
DIMENSIONE
SCALATA

ASSE X

Fig. 10 - Applicazione dell’algoritmo di Bresenham.

11 problema e quindi risolvibile piu1 0 meno allo
stesso modo di quello consistente nel disegnare un
segmento di retta!

Facciamo un esempio pratico: diciamo che I'imma-
gine di partenza e larga 1234 pixel, mentre quella
di arrivo deve stare in 240 pixel (il nostro display);
I'equazione della retta diventa:

240
1234

Quindi, per esempio, il pixel dell'immagine origina-
le 790 corrisponde, nell'immagine scalata a:

y= 240 790=153.65
1234

Come vedete otteniamo, ovviamente, un numero
non intero. 153.65 corrisponde al pixel numero 153
0 154? Intuitivamente arrotondiamo all’intero piu1
vicino, quindi 154.

Il problema e che siamo obbligati a lavorare con
numeri decimali, cosa molto inefficiente, tenendo
conto che dobbiamo eseguire queste operazione per
un numero di pixel spesso molto grande.
Lavorando solo con numeri interi otteniamo sem-
pre il numero in difetto, 153 in questo caso, cosa che
da alla linea un’apparenza “segmentata”, e lo stesso
vale se utilizziamo il sistema per scalare la nostra
immagine. Risultano inoltre necessarie una molti-
plicazione ed una divisione su numeri interi oppure
una moltiplicazione per un numero in floating point

Fig. 10 - Rappresentazione dell’equazione.

=

::J— ELETTRONICA IN ~ Settembre 2017 9

e la riconversione in numero intero, operazioni che

sono piuttosto lente. L’algoritmo di Bresenham ri-

solve brillantemente il problema, riducendo inoltre

il numero di calcoli da fare. Per capire come funzio-

na, riscriviamo l'equazione della retta precedente:
D

y=2-X
0

Dove ‘D’ & la dimensione dell’immagine di destina-

zione e ‘O’ & la dimensione dell'immagine originale.
La possiamo riscrivere in questo modo:

O-Y-DX=0

Quest’equazione rappresenta una retta su un piano;
tutti i punti della retta la soddisfano (danno risulta-
to 0!), mentre i punti fuori dalla retta non la soddi-
sfano, ma danno un risultato minore o maggiore

di zero a seconda che stiano SOTTO o SOPRA alla
retta (Fig. 10).

Immaginiamo di partire dall’origine (0, 0), che
soddisfa I'equazione. Ora avanziamo lungo l'asse

X (ovvero prendiamo il pixel successivo sull’'im-
magine originale), dobbiamo decidere se avanzare
al pixel successivo anche sull'immagine scalata
oppure no.

Per questo, guardiamo ancora la figura sopra, dove
vediamo il punto A che sta sotto alla retta il punto

B che ci sta sopra, ed il punto M che sta a meta tra i
due. Chiaramente, se la retta passa sotto al punto M
significa che il punto Y & piu vicino a A, quindi NON
occorre passare al successivo (B); se invece la retta
passasse sopra al punto M vorrebbe dire che & piu1 vi-
cina al punto B, quindi occorrerebbe scegliere quello.
Per decidere quale prendere inseriamo la posizione
del punto M nella nostra equazione; in questo caso il
punto M e a meta tra A e B, ovverotraQe 1:

della= ()-%— D1

Moltiplicando il tutto per 2 (in modo da evitare
divisioni e numeri in floating point):

2delta, = O(1+2'Y) - D2:X,
2-delta= O+2-0-Y - 2-D-X,

Ora, immaginiamo di essere arrivati al punto
P,(X,Y,), del quale conosciamo entrambe le coordi-
nate; vogliamo trovare il punto successivo P, ,(X,,,,
Y..,), del quale conosciamo SOLO la coordinata X,
visto che avanziamo pixel per pixel sull'immagine
originale: X;,, = X; + 1; scriviamo quindi la nostra
delta per il punto P,,;:

2-delta,,,=0+2-0-Y,,—2-DX,,
e, poichée X, =Xi+1
2-delta,, = 0+2-0'Y,,,—2-D-X—-2-D

Ora, Y,,, I'abbiamo ricavato in base al valore pre-
cedente di delta (delta;), e pud assumere solo due
valori:

Yi+1 = Yi
Y, =Y, +1

SE delta, era >=0
SE delta, era <0

Quindi anche il prossimo valore di delta (delta,,,) lo
possiamo ricavare dal precedente, secondo questa
relazione:

2-delta,,,— 2-delta=2-0-(Y ,,,= Y)=2-D

Ottenuta sottraendo le due equazioni precedenti,
quindi:

2-delta,,,=2-delta,+2-O-(Y o= Y)= 2-D

Tabella 3
originale || corrente || pixel successivo .

se delta e minore di zero, il punto medio sta SOTTO corrente stccessiva
alla retta, quindi questa e piu1 vicina a B; altrimenti 0 0 S| 0 3 1
sta SOPRA alla retta che risulta quindi pit1 vicina 1 s NO 1 4 1
ad A. Il valore “delta’ ci permette quindi di decidere, g ‘1‘ 2: ; ; i
in base al suo segno, se passare o meno al prossimo 4 5 NO 3 5 3
pixel nell'immagine di destinazione. e = S 2 5 7
P'assando.ai punti successivi, Pih in generale, pos- 6 o si 4 1 5
siamo scrivere la nostra equazione come: 7 1 NO 5 6 5
| 8 6 Sl 5 -3 6
delta= 0»(§+ Y DX, 9 3 S 6 0 7

10 Settembre 2017 ~ ELETTRONICA IN

Visto che Y,,; - Y, pud assumere solo 2 valori (1 o
zero) a seconda che deltai sia positivo o negativo,
abbiamo:

2-delta,,,=2-delta—~2-D se delta; >= 0

2-delta,, =2 -delta+2-0-2-D sedelta, <0

(ci siamo portati dietro il coefficiente 2 fino alla fine,
anche se in questo caso potrebbe essere semplifica-
to visto che la nostra retta passa per 1’origine (0,0),
cosa non sempre vera nell’uso dell’algoritmo, nel
qual caso appare anche un valore costante nell’e-
spressione). Abbiamo quindi trovato un modo per:
* scegliere se aumentare o meno il valore di Y in
base al valore di delta CORRENTE
e trovare il valore di delta SUCCESSIVO che ci
permette di proseguire

Possiamo quindi scrivere il nostro codice in questo
modo, per “stringere” una riga di pixel:

int delta = 0;

int posizioneOriginale = 0;

int posizioneRidotta = 0;

while (posizioneOriginale < larghezzaOriginale)

{

if (delta <= 0)

CopiaPixel (posizioneOriginale, posizioneRidotta) ;
posizioneRidotta++;
delta += larghezzaOriginale - larghezzaRidotta;

}

else

{
}

posizioneOriginale++;

}

delta -= larghezzaRidotta:

Per mostrarvi come si “muovono” le varie variabili,
possiamo pensare ad una larghezza originale di 10

mente. L’algoritmo e in grado di saltare in modo
ottimale le righe e le colonne dell'immagine origi-
nale per farla stare nello spazio di destinazione.

Ma questo & un algoritmo perfetto? No, perché gli
algoritmi professionali non si limitano a togliere

dei pixel, ma “aggiustano” anche quelli a fianco

di quelli tolti, in modo da eliminare eventuali
artefatti nell'immagine; questo implicherebbe la
memorizzazione di linee, cosa che non possiamo
fare, e pesanti calcoli per determinare i valori dei
pixel. Notare la differenza, in caso di riduzione
dell'immagine, & comunque molto difficile: noi
nelle nostre prove non ci siamo riusciti!

Ben diverso sarebbe il caso di ingrandimento
dell'immagine, cosa che abbiamo appositamente
evitato; anche in quel caso si potrebbe usare 1’algo-
ritmo di Bresenham per inserire, invece che togliere,
righe e colonne di pixel. Il problema & che inseren-
dole dobbiamo “inventarci” dei valori per i pixel
aggiunti; se li prendiamo semplicemente dal pixel
precedente vengono fuori degli artefatti nell'imma-
gine, che, in questo caso, si notano molto facilmente.
Servirebbe quindi un’interpolazione tra pixel prece-
dente e successivo, in modo da avere una transazio-
ne di colore piu progressiva, tuttavia, come abbia-
mo accennato prima, la cosa e complicata e richiede
la memorizzazione di parti consistenti dell'immagi-
ne. E non possiamo permettercelo.

CONCLUSIONI

Bene, si conslude qui la nostra esposizione dell’ap-
plicazione PhotoFish, sperando che la pur pesante
trattazione sulla gestione delle immagini e sui
formati di compressione vi sia stata utile e che chi
vorra potra applicare poficuamente le nozioni.

* FEIETD
pixel ed una ridotta di 7 pixel, e vedere i vari passi Ty per iLMATERIALE

dalla Tabella 3.

Si nota che vengono saltati 3 pixel su 10, per la pre-
cisione i numeri 1, 4 e 7, mentre ne vengono copiati
esattamente 7, come quelli disponibili nella lar-
ghezza dell'immagine ridotta. I valori nelle colonne
“delta” rappresentano una misura dell’errore tra la
posizione precisa dei pixel nell'immagine di desti-
nazione e quella ottenuta; pil1 piccoli sono e piu ci si
avvicina al teorico.

Nel nostro caso reale dovremo, ovviamente, ripete-
re il procedimento anche in un ciclo esterno, visto
che dobbiamo ridimensionare sia in orizzontale che
in verticale, ma il principio non cambia minima-

Tutti i componenti utilizzati in questo progetto

sono di facile renerihilita Il master de| circuito

stampato puo es o Q della rivi-
sta cosi come il f M program-
mare il microcont testo ensore ad
infrarossi IR38D E— entre I'in-

tegrato Microchip MCP3905A e disponibile 4,20
Euro.

-

ELETTRONICA IN -~ Settembre 2017 11

