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ella prima punta-
ta abbiamo avuto 

modo di introdurvi il 
progetto, che utilizzan-
do una board Fishino 
(tipicamente, non ne-
cessariamente, una 32 
bit) riceve tramite link 
wireless file d’imma-
gine che gli inviamo 
tramite il servizio di 
instant messaging Te-
legram e li visualizza 
su un display LCD TFT 

montato sull’apposito 
shield TFT pubblicato 
nel fascicolo di giugno 
scorso.
Vi abbiamo descritto 
l’hardware occorren-
te e il modo in cui è 
stato programmato per 
svolgere il compito 
affidatogli, dettaglian-
do le librerie create allo 
scopo e facendo cenno 
alla decodifica JPEG, 
implementata nello 

N

Versione wireless delle cornici digitali 
per riprodurre immagini ricevute da 

WiFi grazie a Fishino e allo shield TFT. 
Dopo l’hardware e le librerie, facciamo 
un po’ di didattica sulla gestione delle 

immagini. Seconda e ultima puntata.
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PHOTOFISH
DIGITAL 

FRAME WIFI



2      Settembre 2017 ~ Elettronica In
  

Elettronica In ~ Settembre 2017      3

sketch e fondamentale per la visualizzazione delle 
immagini. Abbiamo anche spiegato che, per ragioni 
di occupazione di memoria, le immagini ricevute 
vengono decodificate al volo, spezzettate e inviate 
al display grafico una porzione alla volta, così da 
avere un buffer di dimensioni ridotte.
Spiegata la decodifica JPEG e come avviene nel 
sistema, approfondiamo la materia con un’utile 
disamina sui formati d’immagine e sulla compres-
sione, in particolare quella JPEG.

UN PO’ DI TEORIA
Per capire come mai il formato JPEG sia così effi-
ciente ma anche piuttosto pesante da decodificare, 
vediamo di spiegarne il funzionamento con qualche 
schema a blocchi; iniziamo dalla conversione dello 
spazio colore e dalla segmentazione (Fig. 1).
L’immagine viene per prima cosa convertita dallo 
spazio colore RGB ad uno spazio colore differente, 
composto da luminanza (Y) e da due valori di cro-
minanza (Cr e Cb), che corrispondono più o meno a 
tinta e saturazione colore.
Questo viene fatto perché l’occhio umano percepi-
sce la luminosità ed i colori attraverso due recettori 
differenti (bastoncelli e coni); i bastoncelli risul-
tano molto più sensibili, ma non sono in grado di 
differenziare i colori dell’immagine, ma solo i valori 
di luminosità, mentre i coni sono meno sensibili 
ma riescono a distinguere i colori. Ne consegue che 
l’occhio risulta molto più sensibile alle variazioni ed 
agli errori sulla luminosità di un pixel piuttosto che 
alle sue variazioni cromatiche.
Passando allo spazio di colore YCrCb separiamo, 
appunto, i valori di luminosità dalle componenti 
cromatiche, che possono seguire vie diverse nel 
percorso di compressione. Come vedremo, potremo 
infatti comprimere maggiormente o addirittura 
scartare alcuni valori di crominanza senza nessun 

effetto visibile o quasi.
L’immagine viene quindi spezzettata in blocchi da 
8x8 pixel, sui quali verranno concentrate le succes-
sive operazioni di compressione (Fig. 1). Fin qui, 
infatti, l’immagine è inalterata; la conversione dello 
spazio colore è un procedimento reversibile senza 
perdita di qualità (salvo eventuali errori numerici).
Questi blocchi sono detti MCU, Minimum Coded 
Unit, ovvero le più piccole unità codificate.
Ogni blocco viene quindi processato per proprio 
conto, indipendentemente dagli altri.
Successivamente le componenti di luminanza e 
crominanza di un singolo blocco vengono separate 
ed iniziano a seguire vie diverse (Fig. 2).

TRASFORMATA DISCRETA DEL COSENO
Come abbiamo detto sopra, finora i pixel sono 
rimasti invariati: ogni tripletta di byte nelle nostre 
MCU rappresentano un pixel sullo schermo, poco 
importa che usiamo unità di misura differenti (RGB 
o YCrCb). Abbiamo sempre tre valori numerici per 
ogni pixel.
Se guardiamo un’immagine reale notiamo subito 
alcune caratteristiche, la prima delle quali è che 
normalmente l’immagine varia poco tra un pixel 
e quelli immediatamente adiacenti. È raro trovare 
grossi sbalzi di luminosità, e ancor meno di colore, 
tra due pixel “vicini”.
Ma come possiamo sfruttare questa cosa? Ebbene, 
immaginiamo di convertire tutto il blocco di 8x8 
pixel, la nostra MCU, facendo una media tra tutti 
i valori di luminanza e crominanza dei pixel. In 
pratica, facciamo un grosso “pixelone” mediando 
tutti i colori dei 64 pixel. Ovviamente otterremo 
un’immagine molto degradata ma quasi sempre ri-
conoscibile. Se invece di creare un unico “pixelone” 
ne facciamo 4, ognuno ottenuto facendo la media di 
4x4 = 16 pixel, otterremo già un risultato migliore. 

Fig. 1 - Spazio colore e segmentazione.
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Così via, fino a scendere a 2x2 pixel mediati fino a 
1 singolo pixel, che poi è l’immagine originale con 
la qualità inalterata. Ora, proviamo a procedere in 
questo modo: 

- facciamo un immagine con il “pixelone” iniziale;
- ovvero la media di tutti i pixel;
- ne sovrapponiamo un’altra con 4 blocchi conte-
nenti ciascuno le differenze tra la media dei 4x4=16 
pixel di prima ed il “pixelone”, e via di seguito. 

In pratica, ricostruiamo l’immagine iniziale sovrap-
ponendo varie gradazioni di “qualità”. È intuitivo 
che, facendo bene le cose, si ottiene ancora l’imma-
gine originale. Abbiamo quindi separato l’imma-
gine in una sovrapposizione di immagini parziali, 
dalla più grossolana fino ai dettagli più fini.
In questa separazione, la prima immagine rappre-
senta il valore medio su tutti i 64 pixel, ovvero, in 
termini “elettronici”, la componente “DC”, ovvero 
la “corrente continua” del blocco.
Il secondo livello rappresenta le variazioni dei punti 
più distanti (stiamo lavorando su 4x4 pixel medi, 
ricordiamo) dalla media, quindi possiamo conside-
rarla come una componente in “bassa frequenza” 
dal punto di vista elettronico.
Restringendo man mano, le varie sotto-immagini 
rappresentano dettagli sempre più fini nel blocco, 
quindi componenti a frequenza maggiore (le varia-
zioni di intensità tra pixel sempre più vicini).
Abbiamo trasformato quindi l’immagine in una 
sovrapposizione di “onde” a frequenze diverse, 
ognuna delle quali rappresenta dettagli sempre più 
precisi dell’immagine del blocco.
Questo lavoro viene fatto tramite una trasformazio-
ne matematica dal dominio spaziale a quello delle 
frequenze. Questa trasformazione si chiama DCT 
(Trasformata Discreta del Coseno) ed è simile alla 

più nota trasformata di Fourier (FT, o FFT), e lavora 
su numeri reali e non su numeri complessi, come 
invece la FFT.
Sorvoliamo sulla trattazione completa, che è piut-
tosto complicata; basti sapere che i 64 valori del 
nostro blocco di pixel, dopo la trasformazione non 
rappresentano più i singoli punti, ma dei valori di 

“frequenza” via-via sempre più alta; il primo valore 
(“in alto a sinistra”, nel blocco) per intenderci, 
rappresenta il valore DC, ovvero la media di tutti i 
64 pixel; i successivi rappresentano delle variazioni 
sempre più dettagliate. La Fig. 3 può dare l’idea di 
come funziona la cosa.
Come si nota, il punto in alto a sinistra rappresenta 
la parte più grossolana della MCU, mentre spostan-
dosi man-mano verso destra e verso il basso si scen-
de sempre più in dettaglio. Sovrapponendo tutte le 
immagini otterremo ancora l’immagine originale.
Qualcuno si starà chiedendo: a che pro? Abbiamo 
sempre 64 valori, dai 64 di partenza, quindi dove 
sta la compressione? Semplice: ancora da nessuna 
parte! Invertendo la trasformazione otteniamo an-
cora l’immagine di partenza, senza alcuna perdita 
di qualità.
Ma, con una rappresentazione di questo tipo, le 
cose iniziano a farsi interessanti; per esempio, cosa 
succede se scartiamo qualche valore vicino all’ango-
lo in basso a destra, e poi facciamo la trasformazio-
ne inversa? Semplicemente, otterremo un’immagine 
leggermente degradata. Quanto viene degradata 
dipende da quanti e quali valori scartiamo. Quindi 
se, per esempio, dei 64 valori ne scartiamo bru-

Fig. 2 - Separazione 
componenti immagine.

Fig. 3 - Variazioni di grigio.
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talmente 32, otterremo un’immagine meno nitida 
(ricordatevi che i valori più vicini all’angolo in 
basso a destra rappresentano i dettagli più fini!), ma 
sempre riconoscibile.
Il “trucco” sta proprio qui: facendo una DCT, scar-
tando alcuni valori e poi invertendo la trasforma-
zione, otterremo un’immagine somigliante a quella 
di partenza, solo meno nitida; la perdita di nitidez-
za dipende da come scartiamo i valori.
In realtà i valori non vengono proprio scartati, ma 
quantizzati; per esempio, potremmo decidere che 
per i valori vicini all’angolo in basso a destra (i 
dettagli fini) invece di usare 1 byte possiamo rap-
presentarli con 1-2-3-4 bit, risparmiando memoria, 
utilizzando delle tabelle di conversione dette “tabel-
le di quantizzazione” (quantization tables).
Sono queste tabelle che influenzano in gran parte 
sia la perdita di qualità nella compressione sia la 
riduzione di dimensione del file.
Ok, abbiamo trasformato il nostro blocchetto di pi-
xel (MCU) con una DCT, abbiamo ottenuto 64 valori 
numerici, li abbiamo “semplificati”, ne abbiamo 
scartato qualcuno. Che ci rimane da fare, per com-
primere ulteriormente il file? Ebbene, per prima cosa 
ricordiamo che le immagini reali variano lentamente, 
senza bruschi salti. 
Quindi, ogni blocco avrà, per esempio, una lumino-
sità poco diversa dal precedente. Invece di conside-
rare la sua luminosità assoluta, quindi, possiamo 
salvare solo la differenza di luminosità rispetto al 
blocco precedente, che sarà presumibilmente un 
valore “piccolo”, quindi codificabile con un numero 

minore di bit, come vedremo in seguito. Quindi, il 
valore del primo coefficiente, la componente DC, 
verrà trasformato nella differenza con il blocco 
precedente. 
Questo procedimento si chiama DPCM (Differential 
Pulse Code Modulation) e viene utilizzato anche 
nella compressione di flussi audio. I restanti 63 valo-
ri saranno stati quantizzati, quindi ridotti in numero 
di bit. Man mano che ci avviciniamo all’angolo in 
basso a destra, questi valori conterranno un nu-
mero sempre maggiore di zeri ed il numero di zeri 
aumenterà con l’aumentare della grossolanità della 
quantizzazione. 
Invece di memorizzare tutti gli zeri e gli uni come 
d’abitudine, converrà quindi contare gli zeri e me-
morizzarne il numero prima dei valori non nulli. Per 
esempio, se abbiamo i seguenti valori:

0 0 0 235 0 0 0 0 0 0 0 0 128 0 0 0 0 0 0 0 0 0 12  (totale 23 byte)
possiamo memorizzarli in questo modo:

3 235 8 128 9 12 (totale 6 byte)

che significa 3 zeri, 235, 8 zeri, 128, 9 zeri, 12. Come 
vedete, abbiamo risparmiato un bel po’ di byte, gra-
zie al fatto che molti numeri sono a zero!
Questo metodo, applicato ai soli 63 coefficienti AC, 
viene chiamato RLE (Run Length Encoding) e viene 
utilizzato anche nella compressione di file generici.

ZIGZAG SCAN
Abbiamo detto che nei 63 valori il “numero di zeri” 
aumenta avvicinandoci all’angolo in basso a destra; 
conviene quindi, prima di comprimerli con l’algo-
ritmo RLE, ordinarli in modo da avere gli zeri il più 
possibile raggruppati, e precisamente in coda al 
blocco.
Per questo si utilizza il procedimento di “zigzag 
scan”, visibile in Fig. 4. 

Fig. 4 - Scansione a zig-zag.

Fig. 5 - Subsampling 
orizzontale 4:2:2.
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ALTRE POSSIBILITÀ DI COMPRESSIONE
Finora abbiamo sfruttato i 3 componenti colore allo 
stesso modo, anche se, probabilmente, con tabelle 
di quantizzazione diverse per luminosità e compo-
nenti cromatiche. Abbiamo inoltre “compresso” le 
componenti DC dei vari blocchi prendendone la 
differenza con i blocchi precedenti, e codificato le 
componenti AC dei blocchi in modo da sfruttare 
l’abbondanza di zeri presenti.
Finito? Ancora no! Possiamo fare altre due cose, per 
ridurre ulteriormente la dimensione del file; una 
con ulteriore piccola perdita di qualità, l’altra senza.

SUBSAMPLING
Abbiamo detto all’inizio che l’occhio umano è 
molto meno sensibile ai colori, ed alle variazioni dei 
medesimi, rispetto a quanto non sia sensibile alle 
variazioni di intensità luminosa.
Possiamo sfruttare ulteriormente questo fatto (an-
che se forse non era chiarissimo, tramite le tabelle di 
quantizzazione differenziate l’abbiamo già parzial-
mente fatto prima) raggruppando le componenti 
cromatiche di MCU adiacenti; per esempio, possia-
mo prendere 2 blocchi di luminosità ed un singolo 
blocco di crominanza (2 in realtà, visto che le com-
ponenti sono 2!) facendo la media delle crominanze 
di due MCU adiacenti. Questo può essere fatto in 
orizzontale o in verticale. Oppure possiamo addirit-
tura mediare la crominanza su quattro blocchi (2x2) 
e quindi prendere quattro blocchi di luminanza per 
uno di crominanza. 
Nella Fig. 5 vedete la rappresentazione del subsam-
pling 4:2:2 orizzontale.
Come si nota, invece di 6 blocchi di valori ne abbia-

mo presi solo 4, con un risparmio del 30%.
Se volessimo fare un subsampling più spinto, un 
4:2:0 (2x2), avremmo la situazione in Fig. 7.
In questo caso, al posto di 12 blocchi di valori ne 
abbiamo presi 6, con un risparmio del 50%.
Il subsampling permette un notevole risparmio di 
dimensioni dell’immagine con perdite di qualità 
quasi sempre trascurabili.
La nostra libreria supporta quattro modalità di 
subsampling: 4:4:4 (no subsampling), 4:2:2 orizzon-
tale, 4:2:2 verticale (mancava nella libreria originale, 
e si ha spesso in immagini ruotate), e 4:2:0.

CODIFICA HUFFMAN
Per chi aveva sperato che fossimo giunti alla fine... 
brutte notizie! Resta l’ultimo livello di compressio-
ne presente nei file JPEG, che è una compressione 
cosiddetta lossless, ovvero senza perdita di infor-
mazioni: la codifica Huffman.
La codifica Huffman si basa sul fatto che i numeri 
che descrivono il mondo reale non sono proprio 
casuali, ma tendono ad avere una certa regolarità. 
La codifica entropica (Entropy coding, in inglese) 
sfrutta questo fatto, utilizzando non più un codice 
a lunghezza fissa di byte, ma un codice a lunghezza 
variabile, assegnando ai numeri più frequenti dei 
codici più brevi.
Come funziona? Supponiamo di dover codificare 
un testo contenente le seguenti lettere:

G, O, P, H, E, R, S e <spazio>

Si tratta di 8 caratteri, quindi con una codifica nor-
male (lunghezza costante di bit) servono 3 bit (23 =   
8!!); possiamo fare la Tabella 1.
Se vogliamo codificare la frase “GO GO GO-
PHERS”, scriviamo:

000 001 111 000 001 111 000 001 010 011 100 101 110

Utilizzando quindi 39 bit in totale. Se guardiamo 
bene la frase però vediamo che alcune lettere appa-

Fig. 6 - Subsampling orizzontale 4:2:0. Tabella 1 

G 000
O 001
P 010
H 001
E 100
R 101
S 110

<SPAZIO> 111
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iono più frequentemente di altre; la G e la O appaio-
no 3 volte ciascuna, lo spazio 2 volte, mentre le altre 
lettere solo una volta. Come possiamo sfruttare 
questa regolarità? Scegliamo un codice differente, 
questa volta a lunghezza variabile, utilizzando un 
minor numero di bit per i simboli più frequenti 
(Tabella 2).
Con questa codifica la nostra frase viene rappresen-
tata da:

10 11 001 10 11 001 10 11 0100 0101 0110 0111 000

Ovvero 37 bit in totale, con un risparmio di 2/39, 
ovvero di circa un ventesimo. Ovviamente l’esem-
pio fatto è piccolo, quindi lo è anche il risparmio. In 
casi reali il risparmio è notevole.
Ma come si fa a codificare e decodificare una serie 
di dati in questo modo? 
La cosa non è semplicissima! Per prima cosa occorre, 
ovviamente, stabilire una “scaletta” dei numeri 
che appaiono più di frequente, in modo da poter 
assegnare loro codici più brevi. In alcuni casi la 
frequenza è già nota, come per esempio per dei testi 
in una specifica lingua, dove esistono statistiche ben 
precise; in altri casi occorre analizzare i dati, o per 
lo meno una quantità sufficiente di dati, per creare 
la tabella.
Questo è uno degli svantaggi della codifica entro-
pica: serve un’analisi preventiva dei dati, e questa 
può essere lenta. Successivamente serve un algo-
ritmo che permetta di trovare le sequenze ottimali 
di bit per i miei dati, ed è questo l’algoritmo di 
Huffman, che è piuttosto complesso e su cui sorvo-
liamo.
Basti sapere che si basa su alberi binari, ed è in 
grado di trovare una soluzione ottimale al proble-
ma, tenendo ovviamente conto che i dati vanno poi 
anche decodificati.
Per esempio, nel nostro caso abbiamo assegnato alla 
G il valore 10; ovviamente NESSUN altro carattere, 
anche se con sequenza più lunga, potrà iniziare con 
10, altrimenti non sapremmo come decodificarlo! Lo 

stesso vale per la O (11). Come potete vedere dalla 
tabella, infatti, nessun altro carattere inizia né con 
10 né con 11; la S e lo <spazio> iniziano, per esem-
pio, con 00 e finiscono rispettivamente con 0 e con 
1, ottenendo i 2 codici 000 e 001. Anche in questo 
caso, NESSUN altro carattere dovrà iniziare con 000 
o con 001, ed infatti i rimanenti iniziano tutti con 01 
(prefisso libero!) e sono obbligati ad utilizzare 4 bit 
ciascuno.
Quando andremo a rileggere i bit per ricostruire le 
nostre lettere potremo quindi farlo univocamente: 
se leggiamo 10 sappiamo con certezza che si tratta 
di una G; se leggiamo 00 sappiamo che ci serve un 
altro bit per ricavare il carattere (S o spazio), mentre 
se leggiamo 01 sappiamo che ci servono altri 2 bit 
per capire di cosa si tratta.
L’altro svantaggio della codifica Huffman (ed in 
genere di tutte le codifiche a lunghezza variabile) 
è che occorre lavorare a livello di Bit, estraendo 
dal flusso bit per bit ed analizzandolo, cosa in cui 
gli elaboratori non sono particolarmente efficien-
ti. Inoltre, se ci servisse, per esempio, solo il terzo 
carattere del testo, saremo comunque obbligati a 
leggere anche i 2 precedenti, visto che è l’unico 
modo che abbiamo per sapere dove inizia quello 
che ci interessa.
È quest’ultimo il più grosso svantaggio della 
codifica JPEG che ci impedisce, per esempio, di 
saltare parti di immagine che non ci interessano. 
Se di un’immagine da 2000x2000 pixel vogliamo 
estrarre un quadratino di 100x100 pixel saremo 
comunque obbligati a leggere almeno TUTTI i pixel 
che precedono quelli che ci interessano, e la cosa la 
potete vedere utilizzando la nostra applicazione su 
immagini molto grandi.

I JPEG PROGRESSIVI
Per “facilitare” la visualizzazione sui browser di 
immagini molto grandi trasferite via internet, so-
prattutto con connessioni lente com’erano le prime 
disponibili, qualcuno ha pensato bene di estendere 
il formato iniziale con una modalità progressiva. 
Di cosa si tratta? Semplicemente, un formato che 

“descrive” l’immagine con livelli di qualità bassi 
ad inizio file, migliorandoli successivamente man 
mano che si avanza nella lettura del medesimo.
Il vantaggio, innegabile, è che il browser è in grado 
di visualizzare un’immagine approssimativa anche 
solo leggendo una piccola parte dei dati disponibili, 
cosa che può far piacere a chi sta visualizzando un 
sito particolarmente lento. 
È quasi sempre preferibile vedere delle immagini 
sfuocate che migliorano pian piano piuttosto che Tabella 2 

G 10
O 11
P 0100
H 0101
E 0110
R 0111
S 000

<SPAZIO> 001
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attendere secondi/decine di secondi senza vedere 
nulla.
Il grosso svantaggio è che quel tipo di file per poter 
essere decodificato a velocità accettabili richiede la 
memorizzazione dell’intera immagine durante la 
lettura. Quindi, se sto scaricando un’immagine da 
1000x1000 pixel, mi ritrovo a dover memorizzare 
3 megabyte di dati durante la ricezione. Per un 
Personal Computer moderno si tratta di un valore 
tranquillamente accettabile, ma non per un micro-
controller, ovviamente.
L’alternativa possibile è quella di rileggere conti-
nuamente il file più volte per ogni blocco (MCU) da 
decodificare. La cosa è possibile, anche se molto len-
ta, se il file è per esempio su una scheda SD locale; 
diventa improponibile se il file è remoto, visto che 
sarebbe necessario richiederlo decine/centinaia/
migliaia di volte al server durante la decodifica.
Un’altra alternativa, praticabile ma estremamente 
macchinosa, è leggere una prima volta il file, creare 
una mappa dei dati su una SD (ovvero, l’inizio 
fisico di ogni MCU nelle sue versioni a definizioni 
migliorate), e poi rileggerlo in modalità random 
(saltellando qua e la) in modo da poter decodificare 
completamente ogni MCU per poterla visualizzare. 
Quest’alternativa è certamente praticabile in caso 
di file locali, un po’ meno per file remoti, per poter 
leggere i quali in modalità random servono apposi-
te estensioni HTTP non sempre disponibili.
L’ultima alternativa possibile su un microcontroller 
è utilizzare la scheda SD come un’estensione della 
RAM dove parcheggiare i dati parziali dell’immagi-
ne decodificata. Sembrerebbe una buona soluzione, 
se non fosse che le SD sono molto più lente della 
RAM e, soprattutto, hanno un limite di scritture 
dopo il quale si guastano.
Viste le problematiche e la scarsa diffusione dei 
JPEG in formato progressivo abbiamo deciso di non 
supportarli nella nostra libreria, come peraltro nella 
maggior parte di librerie disponibili sui microcon-
troller.

JPEG E JFIF
JPEG è l’acronimo per la tipologia di compressio-
ne dei dati-immagine; lo standard non descrive il 
formato di file che contiene le immagini JPEG ma 
solo il modo di comprimerle, che abbiamo visto in 
dettaglio nei paragrafi precedenti. Del formato dei 
file si occupa lo standard JFIF (JPEG File Interchan-
ge Format), che specifica come dev’essere composto 
un file .jpg.
Il file è composto da vari record che contengono le 
dimensioni dell’immagine, la risoluzione, una serie 

di byte necessari per riconoscere il file, alcuni dati 
opzionali ed, infine, l’immagine vera e propria.
Fornire ulteriori dettagli risulterebbe lungo e noioso, 
tenendo conto che questi possono essere trovati 
facilmente in rete. La nostra libreria è comunque in 
grado di interpretarli correttamente ed estrarne le 
informazioni necessarie.

LA DECODIFICA DEI FILE JPEG
Ed eccoci arrivati (quasi) alla fine!
Per decodificare un file JPEG occorre procedere a 
ritroso rispetto a quanto elencato in precedenza, 
ovvero:
•	 Leggere le caratteristiche dell’immagine dagli 

appositi campi nel file; in particolare servono il 
numero di pixel, il tipo di subsampling e la pro-
fondità di colore (i JPEG supportano anche una 
modalità monocromatica, da noi non gestita, con 
256 livelli di grigio, un byte per pixel).

•	 Controllare che il file sia di tipo supportato; come 
detto, non gestiamo la modalità monocromatica 
né i JPEG progressivi

•	 Leggere le tabelle usate nella codifica Huffman 
ed utilizzarle per ripristinare i dati compressi, 
MCU per MCU

•	 Invertire il processo DPCM sui valori DC delle 
MCU (tradotto : il primo valore di ogni MCU, la 
componente media di luminanza e crominanza, è 
memorizzato come differenza con la MCU prece-
dente, e la cosa va invertita!)

•	 De-comprimere i restanti 63 valori delle MCU, 
che erano stati compressi con l’algoritmo RLE

•	 Eseguire la trasformata dei coseni inversa (IDCT) 
per ripristinare i valori YCbCr delle MCU, ovve-
ro i valori di luminanza e crominanza dei singoli 
pixel

•	 Eventualmente integrare i valori mancanti di 
crominanza, se si è scelta una compressione con 
subsampling

Fig. 7 - Rotazione d’immagine.
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•	 Riconvertire il tutto dal formato YCbCr nel for-
mato RGB

•	 Convertirlo nel formato in uscita, se diverso da 
RGB (ad esempio nel formato a 16 bit 565)

•	 Inviare la MCU al display.

ROTAZIONE E SCALING
Solitamente, in un PC, rotazione e scaling sono 
indipendenti dalla decompressione JPEG; prima 
l’immagine viene decompressa in memoria e suc-
cessivamente viene scalata/ruotata per adattarla 
al display. Come visto in precedenza questo non 
è possibile farlo su un microcontroller, che non 
permette la memorizzazione dell’intera immagine 
decompressa.
Come fare, quindi? Un’immagine fuori scala serve a 
poco: se abbiamo un’immagine da 1000x1000 pixel 
e la visualizziamo su un display come il nostro da 
240x320 pixel ne vedremo solo una piccola, insigni-
ficante parte.
La stessa cosa per la rotazione: se l’immagine è più 
larga che alta, e la visualizziamo sul nostro display 
messo “in piedi” lo sfrutteremo male.
La soluzione anche qui è operare in modalità stre-
aming, quindi eseguire scala e rotazione “al volo” 
man mano che arrivano i dati.

ROTAZIONE
Iniziamo dalla rotazione che, se fatta per multipli di 
90 gradi, è concettualmente molto semplice (Fig. 8).
Qui è rappresentata una MCU di 4 pixel, per sem-
plicità, posizionata in alto a sinistra sull’immagine.
Come si nota, occorre ruotare le MCU attorno a 
se stesse e spostarle sul display. In questo caso la 
rotazione avviene cambiando la sequenza dei pixel 
da 1-2-3-4 a 3-1-4-2, mentre l’origine della MCU 
sull’immagine va traslata per portarla alla posizio-
ne desiderata.
Si tratta, in sintesi, di modificare l’ordine dei byte 
nel buffer contenente la MCU e nel ridefinirne la 
sua posizione sul display, in base all’angolo di 
rotazione. La modifica dell’ordine dei byte nella 
MCU dipende solo dal tipo di rotazione, mentre lo 

spostamento sull’immagine dipende sia dal tipo di 
rotazione che dalla posizione originale della MCU.

SCALING
Lo scaling, o ridimensionamento dell’immagine 
risulta decisamente più complesso. Innanzitutto, 
visto che le immagini solitamente disponibili hanno 
dimensioni più grandi del nostro display, evitiamo 
l’ingrandimento, che comporta particolari proble-
matiche che vedremo più avanti.
Ci limiteremo quindi solo alla riduzione dell’imma-
gine. Vista la particolarità della compressione JPEG, 
ovvero il fatto che è realizzata per unità minime di 
immagine (MCU) composte da 8x8 pixel, una prima 
idea è quella di scalarle per multipli di 2, con un 
massimo di 1/8. Questo può avvenire semplice-
mente raggruppando i pixel nella MCU a 2 a 2, 4 a 
4 oppure tutti e 8, facendone la media di intensità e 
colori (Fig. 8).
Questo tipo di ridimensionamento risulta sem-
plificato, appunto, dal fatto che la MCU ha come 
dimensioni una potenza di 2; il vantaggio ulteriore 
scalando sui pixel della MCU è che si fanno le me-
die dei valori senza “buttar via” nulla, e l’immagine 
risultante è senza difetti palesi.
Chiaramente, a meno di non avere una fortuna 
incredibile, è difficilissimo che l’immagine originale, 
scalata di una potenza di 2, si adatti perfettamente 
al nostro display.
Se scalando in questo modo ottenessimo anche solo 
una dimensione molto vicina a quella del display, 
potremmo fermarci ed utilizzarla, al prezzo di un 
minor sfruttamento dello schermo oppure al legge-
ro ritaglio delle parti perimetrali dell’immagine, ma 
anche qui si tratterebbe di casi piuttosto rari.
Poiché vogliamo ottenere la perfezione (!) procedia-
mo quindi nel modo seguente :
•	 utilizziamo per prima cosa la scala grossolana 

per multipli di 2, avvicinandoci il più possibile 
IN ECCESSO alla dimensione voluta. Ovvero, 
dividiamo x 2 i lati dell’immagine il più possibi-
le fino ad ottenere un’immagine vicina a quella 
desiderata, ma più grande, NON più piccola. 
Ovviamente il massimo del fattore di scala è 8, 
lavorando sulle MCU da 8x8 pixel

•	 Ottenuta la scalatura grezza, utilizziamo un algo-
ritmo per eliminare righe e colonne “ogni tanto”, 
in modo da ottenere la dimensione esatta con il 
minor degrado di qualità possibile.

Ma come facciamo a decidere quali righe/colonne 
eliminare ?
Se l’immagine da ottenere fosse un sottomulti-
plo “semplice” di quella originale (esempio, 2/3), Fig. 8 - Scaling d’immagine.
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ovvero con un minimo comune multiplo piccolo 
rispetto alla dimensione dell’immagine, bastereb-
be saltare una riga/colonna ogni numero intero 
di righe colonne; nel caso dell’esempio, 1 ogni 3. 
Il sistema funziona se la frazione ha nominatore 
e denominatore piccoli, come in questo caso. Se 
avessimo un rapporto del tipo 1245/1346 le cose si 
complicherebbero.
Anche qui, purtroppo, è meglio non contare sulla 
fortuna! Solitamente dimensione di partenza e 
finale sono tutt’altro che multipli semplici, quindi il 
sistema non va bene!

L’ALGORITMO DI BRESENHAM
Chi mastica un po’ di grafica applicata agli elabo-
ratori conoscerà questo nome, piuttosto famoso, e 
probabilmente si starà chiedendo “Ma Bresenham 
non serve per disegnare linee???”
Si, si utilizza proprio per quello, e non solo per 
disegnare linee ma anche altre curve geometriche.
Che ce ne facciamo quindi nel ridimensionamento 
delle immagini? Per capirlo, guardiamo la Fig. 10, 
che rappresenta un segmento di retta, disegnato 
con l’accortezza che l’angolo tra questo e l’asse X sia 
minore di 45 gradi.
Se consideriamo l’asse X come il lato dell’immagine 
originale, e l’asse Y come il lato dell’immagine sca-
lata, vediamo che il segmento in rosso rappresenta 
la corrispondenza tra i pixel della prima con quelli 
della seconda; partendo dall’origine (corrispon-
dente all’estremo sinistro di entrambe le immagini), 
spostandomi verso destra, ovvero lungo i pixel 
dell’immagine originale, in verticale otteniamo i 
pixel dell’immagine scalata. Alla fine, portandoci 
sulla larghezza totale dell’immagine originale, in 
verticale otteniamo la dimensione corrispondente 
scalata.

Il problema è quindi risolvibile più o meno allo 
stesso modo di quello consistente nel disegnare un 
segmento di retta!
Facciamo un esempio pratico: diciamo che l’imma-
gine di partenza è larga 1234 pixel, mentre quella 
di arrivo deve stare in 240 pixel (il nostro display); 
l’equazione della retta diventa:

Quindi, per esempio, il pixel dell’immagine origina-
le 790 corrisponde, nell’immagine scalata a:

Come vedete otteniamo, ovviamente, un numero 
non intero. 153.65 corrisponde al pixel numero 153 
o 154? Intuitivamente arrotondiamo all’intero più 
vicino, quindi 154.
Il problema è che siamo obbligati a lavorare con 
numeri decimali, cosa molto inefficiente, tenendo 
conto che dobbiamo eseguire queste operazione per 
un numero di pixel spesso molto grande.
Lavorando solo con numeri interi otteniamo sem-
pre il numero in difetto, 153 in questo caso, cosa che 
da alla linea un’apparenza “segmentata”, e lo stesso 
vale se utilizziamo il sistema per scalare la nostra 
immagine. Risultano inoltre necessarie una molti-
plicazione ed una divisione su numeri interi oppure 
una moltiplicazione per un numero in floating point 

Fig. 10 - Applicazione dell’algoritmo di Bresenham. Fig. 10 - Rappresentazione dell’equazione.
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e la riconversione in numero intero, operazioni che 
sono piuttosto lente. L’algoritmo di Bresenham ri-
solve brillantemente il problema, riducendo inoltre 
il numero di calcoli da fare. Per capire come funzio-
na, riscriviamo l’equazione della retta precedente:

 

Dove ‘D’ è la dimensione dell’immagine di destina-
zione e ‘O’ è la dimensione dell’immagine originale.
La possiamo riscrivere in questo modo:

Quest’equazione rappresenta una retta su un piano; 
tutti i punti della retta la soddisfano (danno risulta-
to 0!), mentre i punti fuori dalla retta non la soddi-
sfano, ma danno un risultato minore o maggiore 
di zero a seconda che stiano SOTTO o SOPRA alla 
retta (Fig. 10).
Immaginiamo di partire dall’origine (0, 0), che 
soddisfa l’equazione. Ora avanziamo lungo l’asse 
X (ovvero prendiamo il pixel successivo sull’im-
magine originale), dobbiamo decidere se avanzare 
al pixel successivo anche sull’immagine scalata 
oppure no.
Per questo, guardiamo ancora la figura sopra, dove 
vediamo il punto A che sta sotto alla retta il punto 
B che ci sta sopra, ed il punto M che sta a metà tra i 
due. Chiaramente, se la retta passa sotto al punto M 
significa che il punto Y è più vicino a A, quindi NON 
occorre passare al successivo (B); se invece la retta 
passasse sopra al punto M vorrebbe dire che è più vi-
cina al punto B, quindi occorrerebbe scegliere quello. 
Per decidere quale prendere inseriamo la posizione 
del punto M nella nostra equazione; in questo caso il 
punto M è a metà tra A e B, ovvero tra 0 e 1:

se delta è minore di zero, il punto medio sta SOTTO 
alla retta, quindi questa è più vicina a B; altrimenti 
sta SOPRA alla retta che risulta quindi più vicina 
ad A. Il valore ‘delta’ ci permette quindi di decidere, 
in base al suo segno, se passare o meno al prossimo 
pixel nell’immagine di destinazione.
Passando ai punti successivi, più in generale, pos-
siamo scrivere la nostra equazione come:

Moltiplicando il tutto per 2 (in modo da evitare 
divisioni e numeri in floating point):

 
Ora, immaginiamo di essere arrivati al punto 
Pi(Xi,Yi), del quale conosciamo entrambe le coordi-
nate; vogliamo trovare il punto successivo Pi+1(Xi+1, 
Yi+1), del quale conosciamo SOLO la coordinata X, 
visto che avanziamo pixel per pixel sull’immagine 
originale: Xi+1 = Xi + 1; scriviamo quindi la nostra 
delta per il punto Pi+1:

e, poiché è Xi+1 = Xi + 1

 

Ora, Yi+1 l’abbiamo ricavato in base al valore pre-
cedente di delta (deltai), e può assumere solo due 
valori:
Yi+1 = Yi			  SE deltai era >= 0
Yi+1 = Yi + 1		  SE deltai era < 0

Quindi anche il prossimo valore di delta (deltai+1) lo 
possiamo ricavare dal precedente, secondo questa 
relazione:

Ottenuta sottraendo le due equazioni precedenti, 
quindi:

Posizione 
originale

Delta
corrente

Copia 
pixel

Posizione 
ridotta 

corrente
Delta 

successivo
Posizione

ridotta 
successiva

0 0 SI 0 3 1
1 3 NO 1 -4 1
2 -4 SI 1 -1 2
3 -1 SI 2 2 3
4 2 NO 3 -5 3
5 -5 SI 3 -2 4
6 -2 SI 4 1 5
7 1 NO 5 -6 5
8 -6 SI 5 -3 6
9 -3 SI 6 0 7

Tabella 3
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Visto che Yi+1 - Yi può assumere solo 2 valori (1 o 
zero) a seconda che deltai sia positivo o negativo, 
abbiamo:

se deltai >= 0

se deltai < 0

(ci siamo portati dietro il coefficiente 2 fino alla fine, 
anche se in questo caso potrebbe essere semplifica-
to visto che la nostra retta passa per l’origine (0,0), 
cosa non sempre vera nell’uso dell’algoritmo, nel 
qual caso appare anche un valore costante nell’e-
spressione). Abbiamo quindi trovato un modo per:
•	 scegliere se aumentare o meno il valore di Y in 

base al valore di delta CORRENTE
•	 trovare il valore di delta SUCCESSIVO che ci 

permette di proseguire

Possiamo quindi scrivere il nostro codice in questo 
modo, per “stringere” una riga di pixel:

int delta = 0;
int posizioneOriginale = 0;
int posizioneRidotta = 0;
while(posizioneOriginale < larghezzaOriginale)
{
	 if(delta <= 0)
	 {
		  CopiaPixel(posizioneOriginale, posizioneRidotta);
		  posizioneRidotta++;
		  delta += larghezzaOriginale - larghezzaRidotta;
	 }
	 else
	 {
		  delta -= larghezzaRidotta:
	 }
	 posizioneOriginale++;
}

Per mostrarvi come si “muovono” le varie variabili, 
possiamo pensare ad una larghezza originale di 10 
pixel ed una ridotta di 7 pixel, e vedere i vari passi 
dalla Tabella 3.
Si nota che vengono saltati 3 pixel su 10, per la pre-
cisione i numeri 1, 4 e 7, mentre ne vengono copiati 
esattamente 7, come quelli disponibili nella lar-
ghezza dell’immagine ridotta. I valori nelle colonne 

“delta” rappresentano una misura dell’errore tra la 
posizione precisa dei pixel nell’immagine di desti-
nazione e quella ottenuta; più piccoli sono e più ci si 
avvicina al teorico.
Nel nostro caso reale dovremo, ovviamente, ripete-
re il procedimento anche in un ciclo esterno, visto 
che dobbiamo ridimensionare sia in orizzontale che 
in verticale, ma il principio non cambia minima-

mente. L’algoritmo è in grado di saltare in modo 
ottimale le righe e le colonne dell’immagine origi-
nale per farla stare nello spazio di destinazione.
Ma questo è un algoritmo perfetto? No, perché gli 
algoritmi professionali non si limitano a togliere 
dei pixel, ma “aggiustano” anche quelli a fianco 
di quelli tolti, in modo da eliminare eventuali 
artefatti nell’immagine; questo implicherebbe la 
memorizzazione di linee, cosa che non possiamo 
fare, e pesanti calcoli per determinare i valori dei 
pixel. Notare la differenza, in caso di riduzione 
dell’immagine, è comunque molto difficile: noi 
nelle nostre prove non ci siamo riusciti!
Ben diverso sarebbe il caso di ingrandimento 
dell’immagine, cosa che abbiamo appositamente 
evitato; anche in quel caso si potrebbe usare l’algo-
ritmo di Bresenham per inserire, invece che togliere, 
righe e colonne di pixel. Il problema è che inseren-
dole dobbiamo “inventarci” dei valori per i pixel 
aggiunti; se li prendiamo semplicemente dal pixel 
precedente vengono fuori degli artefatti nell’imma-
gine, che, in questo caso, si notano molto facilmente.
Servirebbe quindi un’interpolazione tra pixel prece-
dente e successivo, in modo da avere una transazio-
ne di colore più progressiva, tuttavia, come abbia-
mo accennato prima, la cosa è complicata e richiede 
la memorizzazione di parti consistenti dell’immagi-
ne. E non possiamo permettercelo.

CONCLUSIONI
Bene, si conslude qui la nostra esposizione dell’ap-
plicazione PhotoFish, sperando che la pur pesante 
trattazione sulla gestione delle immagini e sui 
formati di compressione vi sia stata utile e che chi 
vorrà potrà applicare poficuamente le nozioni.

Tutti i componenti utilizzati in questo progetto 
sono di facile reperibilità. Il master del circuito 
stampato può essere scaricato dal sito della rivi-
sta così come il firmware utilizzato per program-
mare il microcontrollore PIC16F88. Il sensore ad 
infrarossi IR38DM costa 2,50 Euro mentre l’in-
tegrato Microchip MCP3905A è disponibile 4,20 
Euro.

Il materiale va richiesto a:
Futura Elettronica, Via Adige 11, 21013 Gallarate (VA)

Tel: 0331-799775 • http://www.futurashop.it

per il MATERIALE
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